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ABSTRACT 
 

 

 

This thesis describes Web3D, a browser capable of visualizing 

virtual 3D scenes on the Internet. Web3D consists of a new 

interpreted language which is based on a few simple, yet 

powerful constructs that allow programmers to describe three-

dimensional scenes and animations in a non-immersive virtual 

world. 3D scenes are modelled using the four 3D geometric 

primitives -- cubes, cones, cylinders, and spheres; light 

sources; and an observer placed at a given location and 

looking in a given direction in space. Visual realism is 

enhanced by shading and texturing. Besides just describing 

graphical objects and their attributes, Web3D is capable of 

embedding these objects within text documents, and linking 

these documents by means of hypertexts. Hyperlinks can be to 

other virtual worlds, or to HTML documents, in which case 

Web3D invokes a standard WWW browser. Web3D, too, can be 

invoked by a properly configured Web browser. 

 

Web3D has been developed in C programming language. It runs on 

UNIX, and requires X Window Motif user interface toolkit. 

Web3D source code is freely available for non-commercial use, 

providing a platform for research and experiment. 
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CHAPTER 1 
 

 

INTRODUCTION 
 

 

 

The Internet, as we all know, is a highway of information, and 

browsers like Netscape and Mosaic give us a platform from 

which to access this information. Existing World Wide Web 

(WWW) browsers are based on the HyperText Markup Language 

(HTML), a language that is capable of presenting information 

in the form of plain 2D text, images, and hyperlinks. For 

years, HTML has been the “language of the Web”, but as HTML 

became popular, the need was felt for a new language that 

could be used to specify 3D scene descriptions and WWW 

hyperlinks -- an analog of HTML for virtual reality. In 1994, 

the Virtual Reality Modeling Language (VRML) was conceived as 

a file format for describing 3D interactive scenes and 

objects. It could also be used to create three-dimensional 

representations of complex scenes such as illustrations, 

product definitions, and virtual reality presentations; and it 

could be used in conjunction with the World Wide Web. 

 

Early on, the designers decided that VRML would not be an 

extension to HTML. HTML was designed for text, not graphics. 

Also, VRML requires even more finely tuned network 

optimizations than HTML; it was expected that a typical VRML 

scene would be composed of many more “inline” objects and 

served up by many more servers than a typical HTML document. 
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Moreover, HTML was an accepted standard. To impede the HTML 

design process with VRML issues and constrain the VRML design 

process with HTML compatibility concerns would be to do both 

languages a disservice. As a network language, VRML would 

succeed or fail independent of HTML. It was also decided that, 

except for the hyperlinking feature, the first version of VRML 

will not support interactive behaviours. This was a practical 

decision intended to streamline design and implementation. The 

first release of VRML (VRML 1.0) featured only static worlds 

hyperlinked with the World Wide Web. VRML 1.0 parsers designed 

in C/C++ were made available to the public. Our task was to 

take up the source code of one of these public-domain parsers, 

and extend it to include specifications for various kinds of 

animations. A “browser” was also required to be implemented, 

that would be the interface for drawing 3D graphics on the 

screen.  

 

However, the process of understanding third-party code turned 

out to be more difficult than we had envisaged. After 

struggling with the VRML 1.0 parser code for some time, we 

decided to quickly develop a parser ourselves, for a language 

which had a syntax similar to that of VRML 1.0, which would 

have the basic constructs required to describe 3D objects on 

the graphics screen. Then we could go ahead and implement 

constructs for various kinds of animations.  

 

Design Criteria 

 

Our browser was designed to meet the following requirements: 

 

• Platform independence 

• Extensibility 

• Ability to work well over low-bandwidth connections 

 

Platform independence: Platform independence essentially 

implies that one can browse our script files on any platform 

as long as one has the interpreter (browser) for that 
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platform. At IIT, we were able to successfully implement our 

browser for three platforms available to us: the Sun 

SPARCstations, Silicon Graphics Indy, and the DRS6000. We hope 

that our source code compiles successfully on other systems 

not available to us at IIT. 

 

Extensibility: Extensions to our language must be easy to 

implement, so that a user can make use of constructs that are 

not a standard part of our language by declaring their 

prototypes within the script file. These constructs must be 

recognised by our interpreter as being external, and must be 

interpreted based on their prototype. However, as implemented, 

extensions to our language require a little effort from the 

part of the user. In order to add constructs to our language, 

a user needs to modify the source code slightly and then 

recompile. The changes required are minimal, and our technique 

almost meets the design criteria. 

 

Ability to work well over low-bandwidth connections: 

Typically, our browser application should retrieve the source 

code written in the 3D-scene-description language over a 

network, interpret this source code locally and display the 3D 

output by the brute power of the processor at its own end. 

This means that only the source code for describing 3D scenes 

needs to be transferred over the network, and since this 

source is plain text, it is far less bulky than graphical 

bitstreams. Besides, plain text transfers also lend themselves 

to greater compression, which network protocols usually take 

advantage of. So, having to transfer lesser data over a 

network for browsing 3D worlds was a major design motivation 

for our browser. 

 

Related Work 

 

Design of Web3D was inspired by the ongoing research on VRML 

throughout the world. This research is still in its nascent 

stage, and we expect to be one of those involved with this 
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evolving new technology of virtual reality on the Web. Here we 

present an overview of some of the VRML browsers currently 

available. We use the term “browser” to refer to software 

which itself retrieves files across the Internet, and “viewer” 

for software which relies on another supporting application to 

perform file retrievals.  

 

WebSpace from Silicon Graphics was the first VRML browser to 

be released. WebSpace is based on the Inventor library and has 

two navigational metaphors (the examiner viewer and the walk 

viewer). WebSpace binaries are freely available with a 

supported commercial version. 

 

WebView from San Diego Supercomputer Center is a publicly 

available VRML browser for SGI systems, available as source 

code based on the Inventor library. WebView has four viewing 

styles (examiner, fly, plane, walk) and an integrated editing 

facility. It is intended as a public development and test 

platform, but is limited to SGI platforms under UNIX. 

 

WorldView from InterVista Software is targeted to empower 

standard PCs for real-time applications. All network 

communications is built into this standalone browser, which 

does not rely on a cooperating Web browser. WorldView is 

available for all Windows platforms. 

 

WebFX from Paper Software is a VRML browser for the Windows 

environment. It incorporates IRC 3D chatting and physically-

based navigation metaphors (including collision detection) as 

well as VRML authoring facilities. 

 

i3D from the Center for Advanced Studie, Research and 

Development in Sardinia exploits the rendering capabilities of 

high-end machines. This VRML viewer includes a preprocessing 

optimisation phase and time-dependent rendering facilities to 

guarantee constant frame rates even for very large scenes. 

 



 

 

11 

 

 

WebOOGL from the Geometry Center of the University of 

Minnesota is available in source code based on Geomview. 

Geomview is a program for viewing and manipulating 3D objects 

and is designed to act as display unit for external modules 

creating geometry. Multiple control windows exist for motion 

control, properties and editing. The WebOOGL browser is 

available for SGI and SUN OS platforms. 

 

VRweb, a joint project between IICM, NCSA, and the University 

of Minnesota, is designed to work with multiple information 

systems, namely WWW, Hyper-G, and Gopher, as well as on a 

variety of platforms. Unlike other VRML viewers available in 

source code, VRweb does not require additional commercial 

libraries like OpenInventor or Motif; it is based entirely on 

freely available software components. 

 



 

 

12 

 

 

 

 

 

 

 

CHAPTER 2 
 

 

LANGUAGE SPECIFICATION 
 

 

 

The language for describing 3D scenes has been developed. It 

is an interpreted language, and the interpreter has been 

written in C for UNIX. This language aims at minimising the 

amount of code a user needs to write in order to describe 3D 

scenes in space. 

 

Any 3D scene is composed of objects. Each such object is 

called a “node”. A node has the following characteristics: 

 

• What kind of object it is. A node might be a cube, a sphere, 
a camera, a light source. 

 

• The parameters that distinguish this node from other nodes 
of the same type. For example, each Sphere node might have a 

different radius, and different surface properties. These 

parameters are called “fields”. A node can have 0 or more 

fields. 
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2.1 General Syntax 
 

The syntax chosen to represent these pieces of information is 

straightforward -- node names must not begin with a digit, and 

must not contain spaces or control characters, single or 

double quote characters, backslashes, curly braces, the plus 

character or the period. 

 

The '#' character begins a comment -- all characters until the 

next newline or carriage return are ignored. The only 

exception to this is within string fields, where the '#' 

character will be part of the string. 

 

Blanks, tabs, newlines and carriage returns are whitespace 

characters wherever they appear outside of string fields. 

 

 

2.2 Coordinate System 
 

Web3D assumes a cartesian, right-handed, three-dimensional 

coordinate system. By default, objects are projected onto a 

two-dimensional device by projecting them in the direction of 

the positive Z axis, with the positive X axis to the right and 

the positive Y axis up. A camera or modelling transformation 

may be used to alter this default projection. 

 

The standard unit for lengths and distances specified is 

meters. The standard unit for angles is degrees. 

 

 

2.3 Fields 
 

There are two general classes of fields -- fields that contain 

a single value (where a value may be a number or a string), 
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and fields that contain multiple values (three components of a 

vector, three components of colour, etc.). Each field type 

defines the format for the values it writes. Multiple-valued 

fields are written as a series of values separated by 

whitespace or commas. No enclosing brackets are required for 

these parameters, and no field can have zero number of 

parameters. 

 

Fields can be of various kinds: 

 

Boolean - A field containing a single boolean (true or false) 

value. Booleans may be written as 0 (representing FALSE), or 1 

(representing TRUE). 

 

Color - A triple-value field containing a colour. Colours are 

written to file as an RGB triple of floating point numbers in 

standard scientific notation, in the range 0.0 to 1.0. 

 

String - A field containing an ASCII string (sequence of 

characters). Strings are written to file as a sequence of 

ASCII characters in double quotes. Any characters (including 

newlines) may appear within the quotes. To include a double 

quote character within the string, precede it with a 

backslash. 

 

Vector - Field containing a three-dimensional vector. Vectors 

are written to file as three floating point values separated 

by whitespace or commas. 

 

 

2.4 Nodes 
 

Web3D's scripting language defines several different classes 

of nodes. Most of the nodes can be classified into one of two 

categories -- shape or property. Shape nodes define the 

geometry in the scene (cubes, cones, spheres, cylinders). 

Conceptually, they are the only nodes that draw anything. 
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Property nodes affect the way shapes are drawn. Nodes may 

contain zero or more fields. Each node type defines the type, 

name, and default value for each of its fields. The default 

value for the field is used if a value for the field is not 

specified in the source file. The order in which the fields of 

a node are read is not important; for example, “Cube { width 2 

height 4 depth 6 }” and “Cube { height 4 depth 6 width 2 }” 

are equivalent. 

 

Here are the nodes grouped by type. The first group are the 

shape nodes. These specify geometry: 

 

AsciiText, Cone, Cube, Cylinder, Sphere 

 

The second group are the properties. These can be further 

grouped into properties of the geometry and its appearance, 

cameras and lights, and any other constructs that affect the 

visualization environment. 

 

Animation, DirectionalLight, Fog, Material, 

OrthographicCamera, PerspectiveCamera, PointLight 

 

The Separator node is used to group objects together. 

 

 

2.5 Description of Nodes 
 

Shape nodes 

 

AsciiText - This node represents strings of text characters 

from the ASCII coded character set. The first string is 

rendered with its baseline at the top left corner of the 

browser's view window. Text is rendered from left to right, 

top to bottom in the font set by “font”. Since the rendering 

of text is only two-dimensional, the z-coordinate of 
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“position” is ignored. The z-component has been maintained to 

allow scope for implementing 3D text some time in the future. 

 

 

 

 

SYNTAX/DEFAULTS 

 

AsciiText  

{ font  1  # number of font. Total fonts=4   

 size  1  # maximum size=6 

 style  1  # 1=regular; 2=italicized 

 weight  1  # 1=medium; 2=bold 

 color  1 1 1 # RGB triplet 

 intensity  1.0 # maximum value 1 

 position  0 0 0 # pixel position on screen 

 string  “Web3D” # string to be displayed 

} 

 

 

The “string” property of AsciiText needs elaboration. This 

property is alone responsible for getting some presentable 

text rolling on the screen. It handles titles, various fonts 

and styles, and hypertexts all in one, so all the other 

properties that appear along with this property are near 

redundant. The syntax for handling the string property can be 

best explained by an example: 

 

AsciiText 

{ string “$F4$S6$BGraphics vs Animation :$B$S2$F2\nThe \ 

 essential difference between $Igraphics$I and \

 $Ianimation$I is the addition of the temporal dimension.\ 

 $VGraphics <graphics.wrl> is the modelling of objects, \

 whereas $Vanimation <animation.wrl> adds temporal \ 

 information to these objects.” 

} 
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Any text appearing between two “$B”'s is written out in bold, 

and between two “$I”'s is written out in italics. “$Fn” is 

used to change the number of font to be used for ensuing text, 

whereas “$Sn” changes the size of ensuing text. The “$V” is 

used to define hypertexts. For example, in the above case, 

“Graphics” and “animation” are hypertexts. These will appear 

underlined in cyan colour, and clicking on them will bring up 

the files “graphics.wrl” and “animation.wrl” respectively for 

browsing. Line breaks are given by the “\” character, as in C. 

This is a special character that must be escaped in case it 

needs to be printed literally. For example, to print a “\” in 

the string, one needs to type in “\\”. In the same way, “$” is 

a special character and needs to be escaped. So one needs to 

type “\$” to display the dollar literally. Same for the quote 

sign.  However, the “#” is not a special character. It will 

appear literally wherever typed. Only outside strings can it 

be used to comment out lines. 

 

Cone - This node represents a simple cone whose central axis 

is aligned with the y-axis. By default, the bottom face of the 

cone is centred at (0,0,0) and has a size of 200 in all three 

directions. The cone has a radius of 100 at the bottom and a 

height of 200, with its apex at 200 and its bottom at 0. The 

cone has two parts: the sides and the bottom. The orientation 

of the cone in space is determined by the “tilt” field. This 

field takes as parameters three floating point values 

representing tilt about the three coordinate axes. 

 

SYNTAX/DEFAULTS 

 

Cone 

{ bottomRadius  100 # radius of the flat face 

 bottomCentre  0 0 0 # centre of bottomface in space 

 height  100  # height of cone 

 tilt  0 0 0  # tilt about x,y,z axes in degrees 

} 
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Cube - This node represents a cuboid aligned with the 

coordinate axes. By default, the cube is centred at (0,0,0) 

and measures 200 units in each dimension, from -100 to +100. 

 

 

 

SYNTAX/DEFAULTS 

 

Cube 

{ width  100 

 height  100 

 depth  100 

 centre  0 0 0 # geometric centre of cube in space 

 color  1 1 1 # RGB triplet 

 tilt  0 0 0 # tilt about x,y,z axes in degrees 

} 

 

 

Cylinder - This node represents a simple capped cylinder 

centred around the y-axis. By default, the cylinder is centred 

at (0,0,0) and has a default size of -100 to +100 in all three 

dimensions. The cylinder has three parts: the sides, the top 

(y = +100) and the bottom (y = -100). One can use the radius 

and height fields to create a cylinder with a different size. 

 

SYNTAX/DEFAULTS 

 

Cylinder 

{ radius  100 

 height  200 

 centre  0 0 0 # geometric centre of cylinder 

 color   1 1 1 # RGB triplet 

 tilt  0 0 0 # tilt about x,y,z axes in degrees 

} 
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Sphere - This node represents a sphere. By default, the sphere 

is centred at the origin and has a radius of 100. 

 

SYNTAX/DEFAULTS 

 

Sphere 

{ radius  100 

 centre  0 0 0 

 color  0.6 0.6 1 

 tilt  0 0 0 # tilt about x,y,z axes in degrees 

} 

 

 

Property nodes 

 

Animation - This node is used to set various parameters 

relating to the animation of 3D objects in space. For example, 

it can be used to set the duration (in seconds) for which 

animation proceeds, and to set the velocity of objects in the 

3D scene. 

 

SYNTAX/DEFAULTS 

 

Animation 

{ duration  30  # default=15 secs 

 velocity  1.0  # min=0; max=1 

} 

 

 

DirectionalLight - This node defines a directional light 

source of constant intensity, that illuminates along rays 

parallel to a given three-dimensional vector. 
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SYNTAX/DEFAULTS 

 

DirectionalLight 

{ on  1    # for TRUE 

 direction  0, 0, -1 # Vector 

 intensity  1.0  # min=0   max=1 

 color  1 1 1  # RGB triplet 

} 

 

 

Fog - This node allows users to simulate fog and haze in the 

virtual scene. It allows one to model 3D scenes with greater 

visual realism. Users can define the intensity of fog in a 3D 

scene by setting certain parameters belonging to this node. 

For example, users can define the visible distance in a scene, 

so that the lesser this distance, the hazier the scene 

becomes. Users can even define the colour of the fog, whose 

default is grey (0.6,0.6,0.6). Objects in a scene typically 

assume the colour of the fog as they go farther from the 

camera. This is quite a crude simulation of fog & haze as 

given in Graphics Gems II. Better implementations may be 

expected in future releases of Web3D. 

 

SYNTAX/DEFAULTS 

 

Fog 

{ visibleDistance  2000 

 color  0.6 0.6 0.6 

} 

 

 

Material - This node defines surface material properties. All 

objects appearing after this node in the source code will 

inherit the properties set by this node. 
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SYNTAX/DEFAULTS 

 

Material 

{ gloss  1   # 0=dull; 1=glossy 

 reflectiveness  1 1 1 # RGB triplet 

 shininess  1 1 1  # RGB triplet 

} 

 

 

OrthographicCamera - An orthographic camera defines a parallel 

projection from a viewpoint. This camera does not diminish 

objects with distance, as a perspective camera does. The 

viewing volume for an orthographic camera is a rectangular 

parallelepiped (a box). A camera can be placed in a Web3D 

world to specify the initial location of the observer when 

that world is entered. Web3D will typically modify the camera 

to allow a user to move through the virtual world 

interactively. 

 

 

SYNTAX/DEFAULTS 

 

OrthographicCamera 

{ position  0 0 1000  # in space 

 orientation  0, 0, -1  # direction of view 

} 

 

 

PerspectiveCamera - A perspective camera defines a perspective 

projection from a  viewpoint. The viewing volume for a 

perspective camera is a  truncated right pyramid. By default, 

the camera is located at  (0,0,1) and looks along the negative 

z-axis; the position and  orientation fields can be used to 

change these values. The focal distance of the camera is 

typically the distance between the centre of projection and 
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the view plane. So greater this distance, larger the object 

appears. 

 

SYNTAX/DEFAULTS 

 

PerspectiveCamera 

{ focalDistance  300 

 position  0 0 1000  # in space 

 orientation  0, 0, -1  # direction of view 

} 

 

 

PointLight - This node defines a point light source at a fixed 

location in space.  A point source illuminates equally in all 

directions; that is, it is omni-directional. 

 

SYNTAX/DEFAULTS 

 

PointLight 

{ on  1    # 0=off; 1=on  

 intensity  1  # min=0; max=1 

 location  0 0 1000 # in space 

} 
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2.6 An Example 
 

# Code for describing a red sphere revolving in circular orbit 

# about the y-axis, as viewed by an approaching camera. The 

# scene is lit by a parallel light source throwing light 

# parallel to vector (1,0,-1) in three-dimensional space 

 

 

Separator { 

# light the scene 

DirectionalLight 

{ on  1    # light source is switched on 

 direction  1, 0, -1 # shining from viewer into scene 

} 

 

# set up the camera 

PerspectiveCamera 

{ focalDistance  200 

 position  0 0 800-50t # approaching along -z direction 

 orientation  0, 0, -1 

} 

 

# set up animation parameters 

Animation 

{ duration  30 # seconds 

 velocity  1 # min=0; max=1 

} 

 

# render a sphere 

Sphere 

{ radius  100 

 centre  300cos(t) 0 300sin(t) # revolving about y-axis 

 color  1 0 0    # red sphere 

} 

 

}  #end 
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CHAPTER 3 
 

 

THE INTERPRETER 
 

 

 

The interpreter, developed in C for UNIX, has two major 

components – the lexical analyser and the parser. 

 

 

3.1 The Lexical Analyser 
 

The lexical analyser is responsible for checking for valid 

“tokens” in the source file that needs to be interpreted. A 

token is the smallest recognised string of characters in the 

language specifications. For example, a “{” is a recognised 

token. Similarly, all objects such as “Separator”, “Cone”, 

“radius”, etc. are tokens. So if a “Cobe” appears in the input 

source file in place of a “Cone”, it will be rejected by the 

lexical analyser, and the program will report an error 

message. 

 

Naturally, for the purpose of validating and invalidating 

tokens, the system requires a sort of dictionary for 

reference. This dictionary is called the “symbol table”, and 
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for our purposes, it is implemented as arrays of strings, one 

containing the list of valid nodes, and the other containing 

the list of valid fields, as shown below: 

char nodes[MAX_NODES][20] = 

 

{ “Separator”, “AmbientLight”, “Animation”, “AsciiText”, 

 “Cone”, “Cube”, “Cylinder”, “DirectionalLight”, “Fog”, 

 “Material”, “OrthographicCamera”, “PerspectiveCamera”, 

 “PointLight”, “Sphere”, “SpotLight”, “TextProperties” 

}; 

 

char fields[MAX_FIELDS][20] = 

 

{ “bottomCentre”, “bottomRadius”, “centre”, “color”, 

 “depth”, “direction”, “duration”, “focalDistance”, 

 “font”, “gloss”, “height”, “intensity”, “location”, “on”, 

 “orientation”, “position”, “radius”, “reflectiveness”, 

 “roughness”, “shininess”, “size”, “solid”, “string”, 

 “style”, “tilt”, “velocity”, “visibleDistance”, “weight”, 

 “width” 

}; 

 

 

The tokens are case-sensitive. For example, whereas Sphere is 

a valid token, sphere is not. Each token has a unique integer 

value associated with it. Since integer comparison takes much 

less time as compared to string comparisons, this method is 

preferred. For the purpose of associating integer values with 

tokens, we define “macros” for each of  the tokens. These are 

placed in a separate header file called “tokens.h”. A section 

of the file is reproduced below: 
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tokens.h: 

 

/* Single character tokens */ 

 

     /* token value for */ 

#define ERROR  -1 /* unrecognised input */ 

#define EOI   0 /* end of input   */ 

#define LB    1 /* left braces   */ 

#define RB    2 /* right braces   */ 

#define LP    3 /* left parenthesis  */ 

#define RP    4 /* right parenthesis  */ 

#define NUMBER   5 /* real numbers   */ 

#define TEXT   6 /* text strings   */ 

#define PLUS   7 

#define MINUS   8 

#define MULTIPLY   9 

#define DIVIDE  10 

#define EXP  11 

#define COS  12 

#define SIN  13 

#define    14 /* time variable 't'  */ 

#define COMMA  15 

#define EXPRESSION 16 

 

/* Macros for objects (nodes) */ 

 

#define SEPARATOR  17 

#define AMBIENTLIGHT  18 

#define ANIMATION  19 

#define ASCIITEXT  20 

#define CONE   21 

#define CUBE   22 

#define CYLINDER   23 

#define DIRECTIONALLIGHT 24 

 

..... 
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The lexical analyser translates the input stream into a 

sequence of tokens -- a form that is more manageable by the 

parser. It uses a simple, buffered input system, getting 512 

bytes at a time from the input stream, and then isolating 

tokens one at a time. Another 512-byte buffer is fetched only 

when the current buffer is exhausted. The main advantage of a 

buffered system is speed. Computers like to read data in large 

chunks. Generally, the larger the chunk, the greater the 

throughput. This is especially so when the buffer size gets 

above the size of a disk cluster. Reading from unbuffered I/O 

needs very frequent disk accesses, which can slow the program 

down considerably. 

 

Another important issue that has to do with speed is the 

lookahead and pushback feature. Lexical analysers often have 

to know what the next input character is going to be without 

actually reading past it. They must “look ahead” by some 

number of characters. Similarly, they often need to read past 

the end of the token in order to recognise it, and then “push 

back” the unnecessary characters onto the input stream. 

Consequently, there are often extra characters that must be 

handled  specially. The special handling is both difficult and 

slow when one is  using single-character input. Going 

backwards, however, is simply a  matter of moving a pointer. 

 

The Finite State Machine for lexical analysis 

 

Figure 1 shows a part of the transition diagram for our Finite 

State Machine (FSM) that recognises the tokens as valid 

sequences of characters: 
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Figure 1 Transition diagram of FSM (in part) 

 

The circles are individual states marked with the state 

number, which can be any arbitrary number that identifies the 

state. State 0 is the start state, and the machine is 

initially in this state. From the start state, reading a 'C' 

from input causes a transition to state 1. From state 1, an 

'o' gets the machine to state 2, and a 'u' gets the machine to 

state '5', and so on. The self-loops around the accepting 

states indicate the action associated with the acceptance of 

the token. This is the integer value to be returned to the 

parser. 

 

 

3.2 The Parser 
 

As the name specifies, this function “parses” the input 

stream, i.e. it scans the input stream character by character. 

It calls the lexical analyser repeatedly to verify if strings 

scanned are valid tokens. Then the parser checks if the 

sequence of these tokens is according to the rules of the 

language. These rules are defined by a grammar, which 
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specifies ALL possible and valid sequences of tokens in a 

source file to produce a meaningful program. 

 

For example, 

 

 Cube { radius  1 } 

 

contains all valid tokens, but even then the property radius 

makes no sense for a cube. It is the work of the parser to 

report this error as soon as it comes across the radius 

property for a Cube. 

 

The parser generates no code, it just parses the input. The 

implementation is in the form of a “recursive-descent parser”, 

i.e. it parses the input stream with the help of a set of 

highly recursive functions. For example, the production: 

 

 

 Expression   →   Expression  +  Expression 

 

is implemented by the following subroutine: 
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void expression() 

{ 

 advance();  /* read the next token in the stream */ 

 if (operator()) /* check if token is an operator */ 

 { 

  advance(); /* advance to the next token */ 

  expression(); 

 } 

 else 

  error(); /* report a parse error */ 

} 

 

int operator() 

{ 

 return ( ((match(PLUS)) || (match(MINUS)) ||  

   (match(MULTIPLY)) || match(DIVIDE)) ||  

   (match(EXP)) ); 

} 

 

 

The function match() returns a boolean value. If the token 

passed as argument is matched, it returns “true”, otherwise it 

returns “false”. 
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3.3 The Grammar 
 

Web3D's 3D-scene-description language is based on the 

following grammar: 

 

 

Separator → Node { Parameters } | Separator 

 

Node  → AsciiText | Cube | Cone | Sphere | ... 

 

Parameters → Field  Value | Field  Expression | Parameters 

 

Expression → Expression + Expression | 

   Expression - Expression | 

   Expression * Expression | 

   Expression / Expression | 

   Expression ^ Expression | 

   sin(Expression) | 

   cos(Expression) | 

   (Expression) | 

   Value | 

   t 

 

Field  → radius | height | width | color | ... 

 

Value  → Number | -Number | Number.Number 

 

Number → Digit | Number 

 

Digit  →  0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 

 

 

 

The parser is a straightforward implementation of this 

grammar. 
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CHAPTER 4 
 

 

MODELLING THREE-DIMENSIONAL SPACE 
 

 

 

In order to describe a scene consisting of a set of 

geometrical objects placed in particular positions and 

orientations in three-dimensional space, we define an 

arbitrary but fixed coordinate system for three-dimensional 

space -- this we call the ABSOLUTE system. Next, the 

coordinates of the vertices of a particular object are defined 

in some simple way, usually about the origin of the ABSOLUTE 

system. This we call the SETUP position for that object. 

Polygonal facets within the object are defined by specifying, 

and giving the order of, the vertices forming their corners. 

 

Each particular object must be moved from its SETUP position 

to the desired position in space, its ACTUAL position. The 

matrix which relates the SETUP and ACTUAL positions for a 

given object may be calculated using one, or a combination, of 

the transformations described above. The object is moved by 

pre-multiplying the column vector form of each of its defining 

vertices with the same SETUP to ACTUAL matrix. The vertex 

coordinates are still specified with respect to the ABSOLUTE 

system, whether they are in SETUP or ACTUAL position. Facet 



 

 

33 

relationships such as co-planarity and the order of vertices, 

are preserved with the transformed vertices. Naturally, 

different objects will have unique SETUP to ACTUAL matrices. 

 

In order to illustrate further our algorithm, we will start 

our description by using a single cube. The SETUP vertex 

coordinates of the cube are defined to be the 8 vertex triples 

(1,1,1); (1,-1,1); (1,-1,-1); (1,1,-1); (-1,1,1); (-1,-1,1); 

(-1,-1,-1) and (-1,1,-1); numbered 1 through 8, as shown in 

Figure 2. The six facets are thus the set of four vertices 

1,2,3,4; 1,4,8,5; 1,5,6,2; 3,7,8,4; 2,6,7,3; and 5,8,7,6. The 

peculiar ordering of the vertex indices in the facet 

definitions is to ensure that, when viewed from outside, the 

vertices are in anti-clockwise orientation. This is important 

so that we can decide which facets are visible to the 

observer, and which are not. If the outward-bound normal of a 

polygonal surface (a plane) makes an acute angle with the 

direction of view, the surface is visible, otherwise it is 

not, and must not be rendered. Matrix transformations are then 

used to calculate the ACTUAL position of the cube in space, 

relative to the ABSOLUTE system. 

 

 
Figure 2 SETUP coordinates of a cube 
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4.1 The Observer 
 

We now introduce the concept of an observer. Our eventual aim 

is to represent, in the graphics viewport, a three-dimensional 

scene as viewed by a person standing at a given position and 

looking in a given direction, with position and direction 

specified relative to the ABSOLUTE system. Imagine someone 

having a graphics screen firmly fixed in front of their face, 

and as they walk, run, jump, fly, somersault through space, 

they can only view that space through the screen. It is these 

images that we will simulate on the graphics viewport, so that 

the observer sitting comfortably in front of the screen can 

experience the same sights as our energetic “space-traveller”. 

 

We shall assume that the information about the scene (the 

model, the observer, and the light source) will be stored 

initially in terms of 3D vector coordinates in the ACTUAL 

position relative to the ABSOLUTE coordinate system. The eye 

of the observer (the camera) is placed at a position in space, 

defined by another 3D vector, relative to the ABSOLUTE axis 

looking in a fixed direction in space. 

 

Matrix transformations are used to calculate the coordinates 

of the vertices relative to a new triad of axes, called the 

OBSERVER system, which has the camera at the origin and 

direction of view along the negative z-axis. These new values 

are called the OBSERVED position of the vertices of the 

object. 

 

 

4.2 Orthographic Projection 
 

A “parallel” projection is characterised by having parallel 

lines of projection, and is a projection under which points in 

three-dimensional space are projected along a fixed direction 

onto any plane not parallel to those lines. The orthographic 

projection is a special case whereby the lines of projection 
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are perpendicular to the plane. We can choose the view plane 

to be any plane with normal vector along the line of sight 

(the line of projection). This means that we can take any 

plane parallel to the x/y plane of the OBSERVER system, and 

for simplicity we choose the plane through the origin given by 

the equation z=0. An OBSERVED vertex is thus projected onto 

the view plane by the simple expedient of setting its z-

coordinate to zero, and thus any two different points with 

OBSERVED co-ordinates (x,y,z) and (x,y,z') say (where z ≠ z'), 

are projected onto the same point (x,y,0) on the view plane, 

and hence onto the point (x,y) in the WINDOW system. 

 

 

4.3 Perspective Projection 
 

The orthographic projection has the property that parallel 

lines in three-dimensional space are projected into parallel 

lines onto the view plane. Although they have their uses in 

certain scientific and architectural applications, such views 

do look odd. Human comprehension of spatial position is based 

on perspective. Hence our brains attempt to interpret 

orthographic figures as if they are perspective views. It is 

obviously essential to produce a projection which displays 

perspective phenomena -- that is, parallel lines should meet 

on the horizon, and an object should appear smaller as it 

moves away from the observer. 

 

What is perspective vision? 

 

To produce a perspective view, we introduce a very simple 

definition of what we mean by vision. We imagine every visible 

point in space sending out a ray which enters the eye. 

Naturally the eye cannot see all of space, it is limited to a 

cone of rays which fall on the retina, the so-called cone of 

vision, which is outlined by dashed lines of Figure 3. These 

rays are the lines of projection. the axis of the cone is 
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called the direction of vision. In what follows, we assume 

that all co-ordinates relate to the OBSERVER right-handed 

coordinate system, with the eye at the origin and the 

direction of vision identified with the negative z-axis. 

 

We place the view plane (which we call the perspective plane 

in this special case) perpendicular to the axis of the cone of 

vision at a distance d from the eye (that is, the plane z=-d). 

In order to form the perspective projection we mark the points 

of intersection of each ray with this plane. Since there is an 

infinity of such rays, this appears to be an impossible task. 

Actually the problem is not that great because we need only 

consider the rays which emanate from the important points in 

the scene, in particular the corner vertices of polygonal 

facets. Once the projections of the vertices onto the 

perspective screen have been determined, the problem is 

reduced to that of representing the perspective plane (the 

view plane) on the graphics viewport. A two-dimensional 

coordinate system, the WINDOW system, is defined on the view 

plane together with a rectangular window which is identified 

with the viewport. The image is drawn by joining the pixels 

corresponding to the end-points of lines or the vertices of 

facets. 

 

Calculation of the perspective projection of a point 

 

Let the perspective plane be at a distance d from the eye. 

Consider a point p = (x,y,z) (with respect to the OBSERVER 

system) which sends a ray into the eye. We need to calculate 

the point of intersection, p’ = (x',y',-d), where this ray 

cuts the view plane (the z=-d plane), and thus we determine 

the corresponding WINDOW coordinates (x',y'). First consider 

the value of y' by referring to Figure 3. By similar triangles 

we see that y'/d = y/|z|, that is, y' = -y*d/z (the points in 

front of the eye in the OBSERVER system have negative z- 

coordinates). 
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Similarly, x' = -x*d/z and hence p' = (-x*d/z, -y*d/z). The 

projection makes sense only if the point has negative z 

coordinate (that is, it does not lie behind the eye). We 

assume that the eye is positioned in such a way that this is 

true for all vertices. 

 

Figure 4 illustrates the difference between orthographic and 

perspective projections. Perspective projections apparently 

diminish size and speed with depth, and so appear more 

natural, while orthographic views appear unrealistic and 

distorted. 

 

 

 

 

 

Figure 3 Perspective projection of a point 
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Figure 4 Orthographic and perspective views of a cylinder 
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4.4 Visual Realism through Shading 
 

So far we have considered projections of three-dimensional 

objects on to the graphics viewport. But in order to produce 

visually realistic images, one needs to perform shading of the 

surfaces of these objects depending on the position and 

intensity of light sources, and how light interacts with the 

various objects in a scene. Smooth shading attains the highest 

form of visual realism. 

 

Vision is a perception of light reflected onto the retinas of 

our eyes. Different materials reflect light in different ways, 

enabling us to distinguish between them, but all that we 

actually “see” is light. The purpose of a shading model is to 

calculate what light is reflected to the eye from each visible 

point in a scene, and then to use this information, by 

selecting a suitable form of display for the corresponding 

pixel, to create realistic images of the scene. Thus there are 

two distinct problems to consider. First, a mathematical model 

must be developed to provide the information needed about the 

light reflected from points in a scene; and second, this 

information must be interpreted for application to new facet 

display functions. 

 

We assume that light consists of an infinite number of closely 

packed “rays” or “beams” which we may represent as vectors. 

There are two models which have been used for a light source 

in our browser. The point source model assumes that all rays 

emanate from a single point and may take any direction from 

this point. This idea corresponds to the properties of a 

single light bulb, or, on a larger scale, the sun. 

 

Paradoxically, the sun may also be considered to fall into the 

second category -- parallel beam illumination -- which models 

the illumination produced by a point light source “infinitely” 

far from the object being illuminated or, alternatively, by a 

distributed light source. This model assumes that all rays 
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have a common direction, as with fluorescent lamps. Figure 5 

shows one sphere illuminated by a point light source and 

another with a parallel light source. 

 

Either a parallel beam or a point light source may be 

represented by a single vector specified in relation to the 

OBSERVER coordinate system. In the parallel case the vector is 

treated as a point vector from which the direction can be 

calculated. The position of a point light source is specified 

by a vector s, and in both cases the direction of the light 

illuminating a point p on the surface is called vector -l. 

Note the minus sign -- we adopt this notation because in most 

cases we use the direction vector pointing out of the surface 

in the opposite direction: that is, vector l. In order to 

calculate the light reflected from a point p on a surface we 

need to know the normal to the surface at p, which we call n, 

together with a direction vector from point p on the surface 

towards the light source. For the parallel beam model, finding 

this direction is easy -- it is the vector l for every point 

p. For the point source model, the required vector is s-p, 

which, for consistency, we shall also call l. For calculations 

involving specular reflection (see later) we also need to know 

the position of the camera, which, of course, we have placed 

at the origin of the OBSERVER coordinate system. 

 

Quantifying light -- intensity and colour 

 

Rays of light may vary in brightness or intensity. Ultimately, 

we wish to calculate the intensity of the light which is 

reflected to the eye from a point in a three-dimensional 

scene, and to interpret this information for display on the 

graphics screen. In order to do this, we must be able to map 

the measure of intensity onto the set of colours or shades 

available for display. The range of colours on any graphics 

display is finite -- there is a limit on brightness. We must 

therefore impose a maximum value on intensity, so we measure 

intensity of light using a floating point value between 0 
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(representing darkness) and 1 (representing maximum 

brightness). 

 

 

 

 

 

Figure 5 Parallel and point light sources 

 

 



 

 

42 

White light consists of a wide spectrum of waves of varying 

wavelengths, each corresponding to light of a different 

colour, ranging from red light at one end of the spectrum of 

visible wavelengths to violet at the other. In our somewhat 

simplistic conception of this idea we assume that light can be 

represented by three components -- red, green, and blue. We 

quantify light in terms of the intensities of each of these 

three components. Each of these intensities takes a floating 

point value between 0 and 1. In white light these components 

are present in equal measure. A value of 1 for Ired, 0 for 

Igreen, and 0 for Iblue implies bright red light, whereas 0 for 

Iblue and 0.5 for both Ired and Igreen implies a subdued yellow 

light. The “colour” of the light is determined by the triple 

(Ired, Igreen, Iblue). A colour (α*Ired, α*Igreen, α*Iblue) for some 

value of α, 0≤α≤1, is said to be a “shade” of (Ired, Igreen, Iblue) 

with intensity α. 

 

The colour of a surface 

 

All materials have properties relating the intensity of light 

which they reflect to that of light striking them (incident 

light). We call these properties the “reflective coefficients” 

of  the material. We divide the properties into three 

components corresponding to the red, green, and blue 

components of the light. The values of the Rred, Rgreen, and Rblue 

coefficients represent respectively the proportion of the 

incident red, green, and blue light which is reflected, each 

taking a value between 0 and 1. A value of 1 for Rred implies 

that all incident red light is reflected, while values of 0 or 

0.5 imply respectively that none or half the incident red 

light is reflected. 

 

The absolute colour of a material is determined by the 

relative magnitudes of the Rred, Rgreen, and Rblue coefficients. 

For a white material all three are equal to 1, for a black 

material all are 0, while any material with equal Rred, Rgreen, 

and Rblue values between 0 and 1 is a shade of grey. A large Rred 
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coefficient combined with small Rgreen and Rblue gives a reddish 

colour and so on. 

 

The apparent colour of a point on a surface is the colour of 

light reflected to the eye from that point on the surface. 

This is obviously dependent on the light illuminating the 

surface (including ambient light) as well as on the absolute 

colour and other properties of the surface (for example, 

gloss), but in the simple case of a dull (matt) surface 

illuminated by white light, the apparent colour is always a 

shade of the absolute colour. 

 

Reflection of Light 

 

There are two distinct ways in which light is reflected from a 

surface -- diffuse reflection and specular reflection. All 

surfaces exhibit diffuse reflection. When light hits a matt 

surface, it is scattered in all possible directions (we assume 

uniformly), so that the intensity of light reflected to the 

eye in this way is independent of the position from which the 

surface is viewed. We then see an apparent colour for the 

surface which is dependent on both the reflective colour 

coefficients of the surface and the colour of the incident 

light. 

 

Glossy surfaces also exhibit specular reflection, the effect 

which produces the highlights clearly observed on the shiny 

surface of a metallic sphere illuminated by a light source. In 

this case, most of the light is reflected off the surface -- 

very little light is absorbed, and so the colour of the 

specularly reflected light is not dependent on the reflective 

coefficients of the surface. 

 

Specular reflection is governed by two parameters which we 

call m and s. The parameter m is a measure of the gloss of the 

surface material, or the specular reflection exponent, and 

refers to the sharpness of fall-off in intensity of reflection 
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along directions deviating from reflection direction r. It 

takes an integer value between 1 and 400 theoretically, but 

for our purposes we found that a value of 10 gave sufficiently 

glossy surfaces. In the language specifications, the value of 

gloss varies between 0 and 1, which is actually scaled to a 

value between 0 and 10. 

 

Not all light is reflected straight to the eye. Diffuse 

reflection, for instance, scatters light uniformly in all 

directions. This results in a low level of ambient light 

illuminating any scene. This is background light reflected 

equally in all directions from the ground, walls, and other 

exposed surfaces. We assume that ambient light illuminates all 

surfaces of the model equally and ensures that those surfaces 

which are not exposed to a genuine light source do not appear 

perfectly black. The colour of ambient light is, of course, 

dependent on the reflective coefficients of the surfaces from 

which it has been reflected. 

 

In the illumination model we have used, we assume that all 

incident light (both source and ambient) is white light, 

thereby consisting of equal measures of red, green, and blue 

components. The intensity of ambient light is a floating point 

number between 0 and 1. This value can be set in the source 

code for describing 3D scenes. It is usually taken to be 0.2, 

i.e. 20% of the light in a scene comes from an ambient light 

source. We call this intensity Ia. The maximum intensity of 

light that may illuminate a scene is 1. This includes both 

ambient light and light emanating directly from a source. The 

intensity contribution of incident light from a source is 

therefore limited to (1 - Ia). The intensity of light emitted 

by a source is given a value between 0 and 1, called Is, and 

the incident light from this source, therefore, has the 

intensity value given by Is*(1 - Ia). 
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4.5 Developing a Shading Model 
 

The ideal shading model calculates the precise colour of light 

reflected into the eye from any visible point in a scene. 

Therefore, such a model is required to determine the 

intensities of red, green, and blue components of this colour 

for any given point. This we call a colour shading model. 

 

For our shading model, we use a number of parameters called 

material properties. These are the properties that govern the 

way in which a material reflects light -- its reflective 

coefficients, gloss, shine, etc. For our simple intensity 

shading model, we use just one attribute, R say, with a value 

between 0 and 1, which represents a general reflective 

coefficient. This attribute is composed of three reflective 

coefficients, one for each primary colour. These are the RGB 

reflective coefficients Rred, Rgreen, and Rblue. 

 

Ambient light 

 

We begin by modelling the reflection of ambient light which 

illuminates all surfaces equally, including those facing away 

from the genuine light source. Rays of ambient light strike a 

surface from all directions and are reflected uniformly in all 

directions. The intensity of light reflected to the eye (Iamb) 

is therefore independent of all but the intensity of the 

ambient light and the reflective coefficient of the surface 

with respect to this light. 

 

For our colour shading model, we calculate all three 

components of ambient light as follows: 

 

Iamb(red) = Rred x Ia      (4.1) 

Iamb(green) = Rgreen x Ia      (4.2) 

Iamb(blue) = Rblue x Ia      (4.3) 
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Diffuse reflection 

 

Diffuse reflection is modelled using Lambert's Cosine Law. 

This relates to the intensity of light striking a point on the 

surface to the cosine of the angle θ between the normal to the 

surface at that point and the vector from the point to the 

light source. Naturally, if the angle θ is greater than a right 

angle then the surface at p faces away from the source, and so 

no light reaches the surface, and consequently none is 

reflected. In this case Idiff works out to be less than 0, as we 

shall see. It must be set to 0 in such cases. 

 

The model for diffuse reflection has been improved by the 

inclusion of a distance factor -- that is, the intensity of 

light from a given source falls off with increasing distance 

from the source. At a point that is a distance d from a source 

producing light of intensity Is, the light has intensity 

proportional to Is/d2. But this leads to a sharp and unnatural 

fall-off in intensity as d increases. So a linear fall-off in 

intensity has been used in our programs, i.e. the light now 

has intensity proportional to Is/(d+C) where C is some constant 

value that must be set experimentally to give aesthetically 

pleasing results. 

 

The three components of diffuse light are calculated as 

follows: 

 

Idiff(red) = Rred x Is x (1-Ia) x cos(θ)   (4.4) 

Idiff(green) = Rgreen x Is x (1-Ia) x cos(θ)   (4.5) 

Idiff(blue) = Rblue x Is x (1-Ia) x cos(θ)   (4.6) 
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Specular reflection 

 

Specular reflection, as mentioned previously, is exhibited by 

glossy surfaces. We have used the model developed by Bui Tong 

Phong. This method approximates the intensity of specular 

reflection at a point by using the value of cos(m x α), where 

α is the angle between the direction of perfect reflection of 

light from the point and the vector from that point to the 

eye, as shown in Figure 6, and m is the gloss of  the surface 

material. 

 

 

Figure 6 Specular reflection 

  

 

 

If r is the direction in which light is reflected from the 

surface and -p is the vector from p to the eye, then the value 

of cos(α) is given by cos(α) = r.(-p)/(|r|x|p|). We could have 

taken advantage of elementary laws of trigonometry to simplify 

this calculation, which enables us to calculate cos(α) without 

first calculating r. But there is an alternative method that 

reduces the number of scalar products required, by one. And we 

have used that method. Here, we calculate the average of the 

two vectors p and l, i.e. 

 

 q = -p/|p| + l/|l| 
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Then α/2 is the angle between q and n, and so 

 

 cos(α/2) = n.q/(|n|x|q|) 

 

Knowing that cos(α) = 2cos2(α/2)-1, we may calculate cos(α). 

 

Specular reflection can only be used with a colour shading 

model, like we have used. It cannot be used with an intensity 

shading model. This is because the apparent colour of a point 

near, but not at, a highlight is neither a shade of the 

absolute colour of the surface nor a shade of the colour of 

the light source, but rather it is a mixture of the two 

colours. It should be pointed out that Bui Tong Phong's model 

does not strictly simulate the specular reflection of light, 

but simply produces an effect of similar appearance. 

 

Each colour component in the complete colour shading model is 

calculated by summing the corresponding components of the 

contributions from reflected ambient light, diffuse 

reflection, and specular reflection. If any colour component 

exceeds 1, then naturally it must be set to 1. Since we have 

implemented polygon-shading of 3D objects, this colour 

component is then used to fill one out of all the polygons 

that constitute a primitive. Colour value calculations must be 

done for each visible polygon on the surface of the primitive. 

 

Figure 7 shows the flat-shaded model of a cube rendered in the 

drawing area of our Web3D browser. The cube consists of six 

four-sided polygons in all, with only three polygons visible 

at any time. Figure 8, Figure 9, and Figure 10 show 

respectively flat-shaded models of cones, a cylinder, and a 

sphere. Figure 11 shows the hidden line model of a cube. 

Figure 12 simulates the solar eclipse, with the light source 

placed directly behind a yellow sphere.  Figure 13 and Figure 

14 show some 3D worlds rendered with the help of the four 3D 

geometric primitives, mainly cuboids. 
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Figure 7 Rendering of a cube 
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Figure 8 Polygonal rendering of a cone 
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Figure 9 Polygonal rendering of a cylinder 
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Figure 10 Polygonal rendering of a sphere 
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Figure 11 Hidden line rendering of a cube 
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Figure 12 The solar eclipse 
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Figure 13 Flatshaded rendering of a billiard table 
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Figure 14 Flatshaded rendering of a boulevard 
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CHAPTER 5 
 

 

3D ANIMATION 
 

 

 

Web3D features both static as well as animated worlds. For 

static scene-descriptions, the size and position of objects in 

space is fixed. However, with the help of time-variant 

functions, Web3D is capable of displaying simple real-time 

animations. 

 

 

5.1 Basic Implementation 
 

Web3D is capable of interpreting time-varying values, giving 

rise to animated scenes. These kind of real-time animations 

belong to a class of animations called procedural animations 

where mathematical models define the geometry, shape, size, 

and path of objects as explicit functions of time. For 

example, we can have an object making periodic movements about 

an axis by defining its coordinates as trigonometric functions 

of time. Trigonometric functions supported by Web3D are sin() 

and cos(), and all expressions derived from them. Evaluation 

of expressions is recursive, as defined by the grammar of 

Web3D.  
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For example, a sphere revolving in an elliptical orbit can be 

defined by keeping its x-coordinate acos(t), its z-coordinate 

bsin(t), its y-coordinate remaining constant. This animation 

routine can be implemented with the following source code: 

 

# The following code describes a red sphere revolving in an 

# elliptical orbit about the y-axis, as viewed by a stationary 

# camera.  major axis = 500, minor axis = 300 

 

Separator { 

 

# light the scene 

DirectionalLight 

{ on  1    # light source is switched on 

 direction  1, 0, -1 # shining from viewer into scene 

} 

 

# set up the camera 

PerspectiveCamera 

{ focalDistance  200 

 position  0 0 1000 

 orientation  0, 0, -1 

} 

 

# define animation parameters 

Animation 

{ duration  30 # seconds 

 velocity  1 # min = 0; max = 1 

} 

 

# render a sphere 

Sphere 

{ radius  100 

 centre  500cos(t) 0 300sin(t) # revolving about y-axis 

 color  1 0 0    # red sphere 

} 

} # end 
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In the above code, the x-coordinate and the z-coordinate of 

the sphere's position are time-variant, so that as time 

progresses, the sphere appears to revolve in an elliptical 

orbit about the y-axis. The time-variant expressions need to 

be parsed, converted to postfix, and then calculated for 

increasing values of t. The scene needs to be redrawn every 

time the value of t changes. The rate at which the scenes are 

redrawn is determined by the “velocity” parameter defined for 

the “Animation” construct. This floating point parameter takes 

0 as its minimum value and 1 as its maximum value. Its value 

is mapped inversely to the time duration after which the 

rendering routine will be called again. This recursive 

(callback) feature is handled automatically by the Timeout 

functions provided by the X11 library. When the rendering 

function is called again, it redraws the scene with freshly 

calculated values of time and other necessary variables. The 

duration parameter belonging to Animation node sets the time 

(in seconds) for which the animation must proceed. 

 

While parsing an input file, the interpreter typically checks 

for any time-variant properties. In case there are no time-

variant properties, the scene is drawn straightaway. Otherwise 

the expressions are stored in a buffer, and after the first 

parse, a loop is executed, which evaluates the function with 

values of time-variable 't' interpolated from 0 to the desired 

time, in steps of say 0.5. These values are all stored in a 

temporary buffer, and then the animation process begins. The 

buffer is used to obtain the values of the position, 

orientation etc. of objects at any point of time while the 

animations are in progress. This greatly speeds up the 

animation process, since the browser has to then only 

concentrate on placing the objects correctly in space during 

animation, rather than having to evaluate the expressions 

during the animation process. Since the implementation of 

animations is an object-oriented approach, the user is free to 

carry on his or her normal operations with the browser while 

the animation proceeds in the background. 
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5.2 Introduction to Quaternions 
 

Quaternions provide an effective and convenient means for 

representing the orientation of an observer with good 

behaviour during interpolation. Quaternions are complex 

numbers with one real component and three imaginary 

components. The imaginary units are i, j, and k, and have the 

following properties: 

 

i2 = j2 = k2 = -1 

ij = k  and  ji = -k 

 

with the cyclic permutation i→j→k→i. 

 

Quaternions can be represented as: 

 

q = a + bi + cj + dk. 

 

For our purposes we shall use the condensed notation: 

 

q = (s,v) 

 

where 

 

(s,v) = s + vxi + vyj + vzk 

 

s is thought of as the scalar part of the quaternion and v the 

vector part with axes i, j, and k. Using the above rules it is 

easy to derive the following properties. The multiplication of 

two quaternions: 

 

q1 = (s1, v1)  and  q2 = (s2, v2) 

 

is given by: 
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q1q2 = (s1s2 - v1.v2, s1v2 + s2v1 + v1*v2) 

 

The multiplication of two quaternions is thus a quaternion. 

Mathematically, we have defined a group. Stated simply, a 

group is just a set of elements with a rule defining their 

multiplication such that the result of this multiplication is 

itself an element of that group. Groups can be constructed 

completely arbitrarily, though a surprising number of groups 

are relevant to the physical world. We shall see that a 

subgroup of the quaternion group is closely related to the 

group of rotation matrices.  

 

Note that except for the cross product term at the end of the 

previous equation, it bears a strong similarity to the law of 

complex multiplication: 

 

(a1 + ib1)(a2 + ib2) = (a1a2 - b1b2) + i(a1b2 + a2b1) 

 

The cross product term has the effect of making quaternion 

multiplication noncommutative. 

 

We define the conjugate of the quaternion: 

 

q = (s,v)  to be  q = (s,-v) 

 

The product of the quaternion with its conjugate defines its 

magnitude: 

 

qq = s2 + |v|2 = |q|2 

 

Finally, take a pure quaternion (one that has no scalar part): 

 

p = (0,r) 

 

and a unit quaternion 

 

q = (s,v)  where  qq = 1 
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and define 

 

Rq(p) = qpq-1 

 

Using our multiplication rule, and the fact that q-1 = q for q 

of unit magnitude, this expands to: 

 

Rq(p) = (0, (s2 - v.v)r + 2v(v.r) + 2svxr)      (5.1) 

 

This can be simplified further since q is of unit magnitude, 

and we can write: 

 

q = (cos θ, sin θn)     |n| = 1 

 

Substituting into Equation (5.1) gives: 

 

Rq(p) = (0, (cos2θ - sin2θ)r + 2sin2θn(n.r) + 2cosθsinθnxr) 

 = (0, cos2θr + (1-cos2θ) n(n.r) + sin2θnxr)     (5.2) 

 

From this, we can say that the act of rotating a vector r by 

an angular displacement (θ,n) is the same as taking this 

angular displacement, “lifting” it into quaternion space, by 

representing it as the unit quaternion (cos(θ/2),sin(θ/2)n) and 

performing the operation q()q-1 on the quaternion (0,r). We 

could therefore parametrize orientation in terms of the four 

parameters: 

 

cos(θ/2), sin(θ/2)nx, sin(θ/2)ny, sin(θ/2)nz 

 

using quaternion algebra to manipulate the components. 

 

In practice this would seem an extremely perverse way of going 

about things were it not for one very important advantage 

afforded by the quaternion parametrization. Two quaternions 

multiplied together, each of unit magnitude, will result in a 
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single quaternion of unit magnitude. If we use quaternions to 

represent rotations, then this translates to two successive 

rotations producing a single rotation. 

Now let us see how quaternions work in practice. One single x-

roll of π is represented by the quaternion: 

 

(cos(π/2), sin(π/2) (1,0,0)) = (0, (1,0,0)) 

 

Similarly, a y-roll of π and a z-roll of π are given by 

(0,(0,1,0)) and (0,(0,0,1)) respectively. Now the effect of a 

y-roll of π followed by a z-roll of π can be represented by the 

single quaternion formed by multiplying these two quaternions 

together: 

 

(0,(0,1,0)) (0,(0,0,1)) = (0,(0,1,0) x (0,0,1)) 

     = (0,(1,0,0)) 

 

which is a single x-roll of π. From this we can see that the 

cross product term in Equation (5.2) can be thought of as 

correcting for the interdependence of the separate axes that 

is ignored by Euler's angle notation. Euler angles refer to a 

family of methods by which an object is rotated successively 

three times around three fixed axes to produce a composite 

rotation. An additional advantage afforded by using 

quaternions is that the gimbal lock singularity, which is a 

consequence of using three parameters to parametrize 

orientation, disappears. 
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5.3 Interpolating using Quaternions 
 

Given the superiority of quaternion parametrization over other 

ways of parametrization, this section covers the issue of 

interpolating rotation in quaternion space. Consider an 

animator sitting at a workstation and interactively setting up 

a sequence of key orientations by whatever method is 

appropriate in the Web3D environment. This is usually done 

with the principal rotation operations, but now the 

restrictions that were placed on the animator when using Euler 

angles, namely using a fixed number of principal rotations in 

a fixed order for each key, can be removed. In general, each 

key will be represented as a single rotation matrix. This 

sequence of matrices will then be converted into a sequence of 

quaternions. Interpolation between key quaternions is 

performed and this produces a sequence of in-between 

quaternions, which are then converted back into rotation 

matrices. The matrices are then applied to the object. The 

fact that a quaternion interpolation is being used is 

transparent to the animator. 

 

Moving into and out of quaternion space 

 

The implementation of such a scheme requires us to move into 

and out of quaternion space, that is, to go from a general 

rotation matrix to a quaternion and vice versa. It can be 

shown that the effect of taking a unit quaternion: 

 

q = (cos(θ/2), sin(θ/2)n) 

 

and performing the operation q()q-1 on a vector is the same as 

applying the following rotation matrix to that vector: 



 

 

65 

 1-2Y2-2Z2  2XY-2WZ  2XZ+2WY  0 

 

 2XY+2WZ  1-2X2-2Z2  2YZ-2WX  0 

 

 2XZ-2WY  2YZ-2WX  1-2X2-2Y2  0 

 

 0   0   0   1 

 

 

where the quaternion (cos(θ/2), sin(θ/2)n) is written as 

(W,(X,Y,Z)). By these means then, we can move from quaternion 

space to rotation matrices. 

 

The inverse mapping from a rotation matrix to a quaternion is 

only slightly more involved. All that is required is to 

convert a general rotation matrix: 

 

 M00  M01  M02  0 

 

 M10  M11  M12  0 

 

 M20  M21  M22  0 

 

 0  0  0  1 

 

into the matrix format directly above. The resulting 

quaternion is trivially (W,(X,Y,Z)). Given a general rotation 

matrix, the first thing to do is to examine the sum of its 

diagonal components Mii where 0≤i≤3. This is called the trace 

of the matrix. From the above format we know: 

 

trace = 1-2Y2-2Z2+1-2X2-2Z2+1-2X2-2Y2+1 

 = 4-4(X2+Y2+Z2) 

 

Since the matrix represents a rotation, we know that the 

corresponding quaternion must be of unit magnitude, that is: 
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X2+Y2+Z2+W2 = 1 

 

and so the trace reduces to 4W2. Thus for a 4x4 homogeneous 

matrix we have: 

 

W = (trace)1/2 

 

The remaining components of the quaternion (X,Y,Z) which is 

the axis of rotation scaled by half the sine of the angle of 

rotation, are obtained by combining diagonally opposite 

elements of the matrix Mij and Mji, where 0≤i,j≤2. We have: 

 

X = (M21-M12)/4W 

Y = (M02-M20)/4W 

Z = (M10-M01)/4W 

 

For zero W these equations are undefined and so other 

combinations of the matrix components, along with the fact 

that the quaternion is of unit magnitude, are used to 

determine the axis of rotation. 

 

Having outlined our scheme, we now discuss how to interpolate 

in quaternion space. Since a rotation maps onto a quaternion 

of unit magnitude, the entire group of rotation maps onto the 

surface of the four-dimensional unit hypersphere in quaternion 

space. Curves interpolating through key orientations should 

therefore lie on the surface of this sphere. Consider the 

simplest case of interpolating between just two key 

quaternions. A naive, straightforward, linear interpolation 

between the two keys results in a motion that speeds up in the 

middle. This is because we are not moving along the surface of 

the hypersphere but cutting across it. In order to ensure a 

steady rotation we must employ spherical linear interpolation, 

where we move along an arc of the geodesic that passed through 

the two keys. 
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Spherical linear interpolation 

 

The formula for spherical linear interpolation is easy to 

derive geometrically. Consider the two-dimensional case of two 

vectors A and B separated by an angle Ω and vector P which 

makes an angle θ with A as shown in Figure 15. P is derived 

from spherical interpolation between A and B and we write: 

 

P = αA + βB 

 

Trivially, we can solve for α and β given: 

 

|P| = 1 

A.B = cos(Ω) 

A.P = cos(θ) 

 

to give: 

 

P = A sin(Ω-θ)/sin(Ω) + B sin(θ)/sin(Ω) 

 

Spherical linear interpolation between two unit quaternions q1 

and q2, where: 

 

q1.q2 = cos(Ω) 

 

is obtained by generalising the above to four dimensions and 

replacing θ by Ωu where 0≤u≤1. We write: 

 

slerp(q1,q2,u) = q1 sin(1-u)Ω/sin(Ω) + q2 sin(Ωu)/sin(Ω) 

 

Function slerp(p,q,t,qt) returns the interpolated quaternion 

qt, for t between p and q. It caters to special cases where 

the keys are very close together, in which case we approximate 

using the more economical linear interpolation and avoid 

divisions by very small numbers since 

 



 

 

68 

sin(Ω)→ 0  as  Ω → 0 

 

The case where p and q are diametrically opposite, or nearly 

so, requires special attention. 

 

Now, given any two key quaternions, p and q, there exist two 

possible arcs along which one can move, corresponding to 

alternative starting directions on the geodesic that connects 

them. One of them goes around the long way, and this is the 

one we wish to avoid. Naively, one might assume that this 

reduces to either spherically interpolating between p and q by 

angle Ω, where 

 

p.q = cos(Ω), 

 

or interpolating in the opposite direction by the angle      

(2π - Ω). This, however, will not produce the desired effect. 

The reason is that the topology of the hypersphere of 

orientation is not just a straightforward extension of the 

three-dimensional Euclidean sphere. To appreciate this, it is 

sufficient to consider the fact that every rotation has two 

representations in quaternion space, namely q and -q, that is, 

the effect of q and -q is the same. That this is so is because 

algebraically the operator q()q-1 has exactly the same effect 

as (-q)()(-q)-1. Thus, points diametrically opposed represent 

the same rotation. Because of this topological oddity, care 

must be taken when determining the shorter arc. A strategy 

that works is to choose interpolating between either the 

quaternion pairs p and q or p and -q. Given two key 

orientations p and q, find the magnitude of their difference, 

that is (p-q).(p+q), and compare this to the magnitude of the 

difference when the second key is negated, that is 

(p+q).(p+q). If the former is smaller, then we are already 

moving along the smaller arc and nothing needs to be done. 

These considerations are shown schematically in Figure 16. 
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Figure 15 Spherical linear interpolation 

 

 

 

 

 

 

 

Figure 16 Shortest arc determination 
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CHAPTER 6 
 

 

BROWSER DESCRIPTION 
 

 

 

Based on the specifications discussed so far, a browser has 

been developed in C using X Window Motif user interface 

toolkit, and it has been named Web3D. Web3D uses the standard 

X11 library for graphical renderings, and Motif widget library 

for the interface layout and functionality. 

 

 

6.1 The Web3D User Interface 
 

The Web3D window is divided vertically into five areas: menu 

bar, file name display area, drawing area, tool bar, and 

status bar, as shown in Figure 17. The menu bar provides 

access to the full functionality of Web3D. The toolbar and 

additional accelerator keys and mnemonics provide quick access 

to commonly used functions like movement of camera, and 

document navigation.  

 

The major functions included in the menu bar are as follows: 

 

New: This function fires up the editor where one can create a 

new input source file in the file format recognised by Web3D. 

The standard extension for Web3D files is “.wrl” for world. 
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Figure 17 Web3D user interface 

 

 

Open: One can open an existing wrl file by selecting from a 

file-selection box that is a one of Motif's widgets. 

 

Edit Source: Edit the source code of any input file being 

browsed currently. Here, too, the editor is called, and one 

can view/edit the source code and then browse the output at 

the same time in the same Web3D environment. 
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Back/Forward: While following hyperlinks, users can go “Back” 

in the sequence of worlds they have browsed previously, or go 

“forward” in the sequence by one step (if any). 

 

Add Bookmark: As in standard WWW browsers, this feature allows 

users to mark important worlds in a bookmarks file, which they 

can come back to later on. 

 

Scene Information Window: Clicking on this menu item fires a 

small independent window that displays information regarding 

the scene currently being browsed in the display area. More 

specifically, it gives information about the 

position/orientation of the camera and light sources, the 

number of primitives used to render the scene, and the centre 

coordinates of these primitives in three-dimensional space. 

 

The menu bar can also be used to select the rendering mode for 

a particular scene. Web3D supports four rendering modes: 

wireframe, hidden line, flat shading, and texturing. The 

rendering mode specified in the input file can be overridden. 

Besides, three levels of detail are provided: low, medium, and 

high. These modes determine the number of polygons used to 

render a primitive. Low detail uses very few polygons to speed 

up rendering and animation, whereas high detail option uses a 

considerably large number of polygons to render the 

primitives. On a display without hardware graphics 

acceleration, where frame rates are slow for shaded models, it 

might be advisable to navigate in wireframe under low level of 

detail, and see the shaded version in high detail only in the 

pauses between the animations. 

The Web3D user interface is in the form of a window (the 

drawing area) that looks out into 3D space. Users (synthetic 

cameras) can enter this space, manipulate 3D objects placed 

there, throw light upon them, and experience the same sights 

as any observer would in real space. Navigation in 3D space is 

complicated by the need to control (at least) six degrees of 

freedom at the same time. Web3D does not assume the 
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availability of any special 3D input device, such as a 

spaceball or position/orientation sensors, and provides a 

number of natural mappings for a standard 2D mouse. The mouse 

can be used to control the motion of the observer by clicking 

on push-buttons available on the browser's window. Web3D gives 

the observer six degrees of freedom, and allows him or her to 

control only one degree at a time. Should users get lost in a 

scene, a “Reload” function is available to restore the initial 

view of the scene. 

 

Besides describing graphical objects and their attributes, 

Web3D is capable of embedding graphical objects within text 

documents, and linking these documents by means of hypertexts. 

Hyperlinks can be to other virtual worlds, or to HTML 

documents, in which case Web3D invokes a standard WWW browser 

(Mosaic or Netscape). Web3D, too, can be invoked by a properly 

configured WWW browser. Web3D has so far been known to 

interface with both NCSA Mosaic for X Windows and Netscape 

Navigator for X Windows. 

 

 

6.2 Web3D’s Software Architecture 
 

Figure 18 shows the basic software architecture of Web3D. 

Users communicate with the browser via the Interface Layer 

which is the client-end user interface of Web3D. The arrows 

indicate the flow of data and control signals. The input 

stream in parsed and an internal stack of tokens is 

constructed. The rendering component (X11 library) then 

visualizes the contents of this stack and renders the scene 

correctly in the display area of the browser's window. 
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Figure 18 Web3D architecture 

 

 

Thus the source code of Web3D is independent of any particular 

‘graphics’ library for its graphical renderings, and is based 

on freely available software components except that it 

requires Motif, a commercial library, for building its 

‘interface’. 

 

Every node has a separate function associated with it. This 

function alone is responsible for interpreting/rendering 

itself. For example, provided global variables and other 

environment settings are correct, the function cube() when 

called, draws a cube all by itself. The main routine that 

calls all the drawing functions is as follows: 
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while (array_of_tokens[token_count]) 

{ 

 /* scan the array of tokens created from input stream */ 

 

 switch (array_of_tokens[token_count++]) 

 { 

  case  AMBIENTLIGHT  :  ambientlight(); 

  case  ANIMATION   :  animation(); 

  case  ASCIITEXT   :  asciitext(); 

  case  CONE    :  cone(); 

  case  CUBE    :  cube(); 

  case  CYLINDER   :  cylinder(); 

  case  DIRECTIONALLIGHT :  directionallight(); 

  case  FOG    :  fog(); 

  case  MATERIAL   :  material(); 

  case  ORTHOGRAPHICCAMERA :  orthographiccamera(); 

  case  PERSPECTIVECAMERA :  perspectivecamera(); 

  case  POINTLIGHT   :  pointlight(); 

  case  SPHERE   :  sphere(); 

  case  SPOTLIGHT   :  spotlight(); 

  case  TEXTPROPERTIES  :  textproperties(); 

 } 

 

 /*  Flush the display in the drawing area  */ 

 

 XFlush(XtDisplay(wDraw)); 

 

} 

 

 

As is evident from the code above, Web3D treats cameras and 

light sources as any other geometric primitive. 
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CHAPTER 7 
 

 

CONCLUDING REMARKS 
 

 

 

This thesis presented the specifications of a browser capable 

of presenting graphical renderings of a virtual 3D world 

within a computer. This 3D world may be a CAD model, a 

scientific simulation, a view into a database, or a 

walkthrough into a virtual world. Needless to say, such 

applications can add exciting new dimensions to the power and 

usefulness of the Web, adding new ways of interfacing with the 

user and presenting information. 

 

In order to firmly establish Web3D as the standard for 

describing three-dimensional scenes and animations on the 

Internet, it is not sufficient to have a good language 

specification. Browsers capable of many protocols, and 

implemented on many platforms are necessary. Another crucial 

point is the free availability of source code for non-

commercial organisations to allow research and experiment with 

this new type of media. These were the design goals of Web3D. 

We hope that the availability of an open development platform 

will contribute significantly to the evolution of the Web3D 

standard. 
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Web3D is still only a “viewer”, i.e. it has to depend on other 

applications like Mosaic for file retrievals. The ability to 

retrieve files across a network needs to be added. A number of 

animation features like animation of articulated structures, 

collision detection, and soft-object animations can be added 

to the visual realism of the rendered scenes. Real-time multi-

user interaction over a network can be implemented, which will 

enable multi-participant simulations of the same 3D worlds 

simultaneously. 

 

Web3D's 3D-scene-description language is not yet object-

oriented, i.e. it lacks the capability of declaring prototypes 

for nodes, and the ability to use those nodes lower in the 

scene-graph hierarchy. The language can also be made more 

extensible by being able to declare nodes that are not part of 

the standard language specifications without having to 

recompile the code. Besides, a number of features can be added 

to the user interface of Web3D to make it closer in 

functionality to a standard Web browser. 
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