

1

Reality is not enough any more....

2

ACKNOWLEDGEMENTS

I take this opportunity to express my sincere thanks and deep

gratitude to Dr Santanu Chaudhury, my project guide, for his

help and invaluable guidance during the course of my B.Tech.

project. This project would not have been the same without his

vision and guidance.

I must also thank Ms Nandini Srivastava, Senior Scientific

Officer, Department of Computer Science and Engineering, for

allowing me access to the Internet, and for making my source

code available on the Web. I would also like to thank Mrs

Shashi at the Computer Centre Library, IIT Delhi, for giving

me access to the library, and for being there whenever I

needed help. And finally I express my gratitude to all those

who were a source of encouragement and motivation.

Amit Goel

Indian Institute of Technology, Delhi

May 1997

3

CERTIFICATE

This is to certify that the thesis Web-based Virtual Reality

Simulation submitted by Amit Goel (93133) in partial

fulfilment of the requirements for the award of the degree of

Bachelor of Technology in Electrical Engineering at the Indian

Institute of Technology, Delhi, is a record of the student’s

bonafide work carried out by him under my supervision and

guidance during the period July 1996 to May 1997.

The results and contents embodied in this thesis have not been

submitted to any other university or institute for the award

of any other degree or diploma. I hereby approve this thesis

for submission to the Institute towards the award of the

B.Tech. degree.

Dr Santanu Chaudhury

Department of Electrical Engineering

IIT Delhi

4

ABSTRACT

This thesis describes Web3D, a browser capable of visualizing

virtual 3D scenes on the Internet. Web3D consists of a new

interpreted language which is based on a few simple, yet

powerful constructs that allow programmers to describe three-

dimensional scenes and animations in a non-immersive virtual

world. 3D scenes are modelled using the four 3D geometric

primitives -- cubes, cones, cylinders, and spheres; light

sources; and an observer placed at a given location and

looking in a given direction in space. Visual realism is

enhanced by shading and texturing. Besides just describing

graphical objects and their attributes, Web3D is capable of

embedding these objects within text documents, and linking

these documents by means of hypertexts. Hyperlinks can be to

other virtual worlds, or to HTML documents, in which case

Web3D invokes a standard WWW browser. Web3D, too, can be

invoked by a properly configured Web browser.

Web3D has been developed in C programming language. It runs on

UNIX, and requires X Window Motif user interface toolkit.

Web3D source code is freely available for non-commercial use,

providing a platform for research and experiment.

5

TABLE OF CONTENTS

CHAPTER 1 .. 7

INTRODUCTION ... 7
CHAPTER 2 .. 12

LANGUAGE SPECIFICATION .. 12
2.1 General Syntax .. 13
2.2 Coordinate System .. 13
2.3 Fields ... 13
2.4 Nodes .. 14
2.5 Description of Nodes ... 15
2.6 An Example ... 23

CHAPTER 3 .. 24
THE INTERPRETER ... 24

3.1 The Lexical Analyser ... 24
3.2 The Parser ... 28
3.3 The Grammar .. 31

CHAPTER 4 .. 32
MODELLING THREE-DIMENSIONAL SPACE ... 32

4.1 The Observer .. 34
4.2 Orthographic Projection ... 34
4.3 Perspective Projection ... 35
4.4 Visual Realism through Shading ... 39
4.5 Developing a Shading Model .. 45

CHAPTER 5 .. 57
3D ANIMATION ... 57

5.1 Basic Implementation .. 57
5.2 Introduction to Quaternions ... 60
5.3 Interpolating using Quaternions .. 64

CHAPTER 6 .. 70
BROWSER DESCRIPTION ... 70

6.1 The Web3D User Interface .. 70
6.2 Web3D’s Software Architecture .. 73

CHAPTER 7 .. 76
CONCLUDING REMARKS .. 76

REFERENCES .. 78

6

TABLE OF FIGURES

Figure 1 Transition diagram of FSM (in part) .. 28
Figure 2 SETUP coordinates of a cube ... 33
Figure 3 Perspective projection of a point ... 37
Figure 4 Orthographic and perspective views of a cylinder 38
Figure 5 Parallel and point light sources ... 41
Figure 6 Specular reflection .. 47
Figure 7 Rendering of a cube .. 49
Figure 8 Polygonal rendering of a cone .. 50
Figure 9 Polygonal rendering of a cylinder .. 51
Figure 10 Polygonal rendering of a sphere ... 52
Figure 11 Hidden line rendering of a cube .. 53
Figure 12 The solar eclipse ... 54
Figure 13 Flatshaded rendering of a billiard table ... 55
Figure 14 Flatshaded rendering of a boulevard .. 56
Figure 15 Spherical linear interpolation ... 69
Figure 16 Shortest arc determination .. 69
Figure 17 Web3D user interface ... 71
Figure 18 Web3D architecture .. 74

7

CHAPTER 1

INTRODUCTION

The Internet, as we all know, is a highway of information, and

browsers like Netscape and Mosaic give us a platform from

which to access this information. Existing World Wide Web

(WWW) browsers are based on the HyperText Markup Language

(HTML), a language that is capable of presenting information

in the form of plain 2D text, images, and hyperlinks. For

years, HTML has been the “language of the Web”, but as HTML

became popular, the need was felt for a new language that

could be used to specify 3D scene descriptions and WWW

hyperlinks -- an analog of HTML for virtual reality. In 1994,

the Virtual Reality Modeling Language (VRML) was conceived as

a file format for describing 3D interactive scenes and

objects. It could also be used to create three-dimensional

representations of complex scenes such as illustrations,

product definitions, and virtual reality presentations; and it

could be used in conjunction with the World Wide Web.

Early on, the designers decided that VRML would not be an

extension to HTML. HTML was designed for text, not graphics.

Also, VRML requires even more finely tuned network

optimizations than HTML; it was expected that a typical VRML

scene would be composed of many more “inline” objects and

served up by many more servers than a typical HTML document.

8

Moreover, HTML was an accepted standard. To impede the HTML

design process with VRML issues and constrain the VRML design

process with HTML compatibility concerns would be to do both

languages a disservice. As a network language, VRML would

succeed or fail independent of HTML. It was also decided that,

except for the hyperlinking feature, the first version of VRML

will not support interactive behaviours. This was a practical

decision intended to streamline design and implementation. The

first release of VRML (VRML 1.0) featured only static worlds

hyperlinked with the World Wide Web. VRML 1.0 parsers designed

in C/C++ were made available to the public. Our task was to

take up the source code of one of these public-domain parsers,

and extend it to include specifications for various kinds of

animations. A “browser” was also required to be implemented,

that would be the interface for drawing 3D graphics on the

screen.

However, the process of understanding third-party code turned

out to be more difficult than we had envisaged. After

struggling with the VRML 1.0 parser code for some time, we

decided to quickly develop a parser ourselves, for a language

which had a syntax similar to that of VRML 1.0, which would

have the basic constructs required to describe 3D objects on

the graphics screen. Then we could go ahead and implement

constructs for various kinds of animations.

Design Criteria

Our browser was designed to meet the following requirements:

• Platform independence

• Extensibility

• Ability to work well over low-bandwidth connections

Platform independence: Platform independence essentially

implies that one can browse our script files on any platform

as long as one has the interpreter (browser) for that

9

platform. At IIT, we were able to successfully implement our

browser for three platforms available to us: the Sun

SPARCstations, Silicon Graphics Indy, and the DRS6000. We hope

that our source code compiles successfully on other systems

not available to us at IIT.

Extensibility: Extensions to our language must be easy to

implement, so that a user can make use of constructs that are

not a standard part of our language by declaring their

prototypes within the script file. These constructs must be

recognised by our interpreter as being external, and must be

interpreted based on their prototype. However, as implemented,

extensions to our language require a little effort from the

part of the user. In order to add constructs to our language,

a user needs to modify the source code slightly and then

recompile. The changes required are minimal, and our technique

almost meets the design criteria.

Ability to work well over low-bandwidth connections:

Typically, our browser application should retrieve the source

code written in the 3D-scene-description language over a

network, interpret this source code locally and display the 3D

output by the brute power of the processor at its own end.

This means that only the source code for describing 3D scenes

needs to be transferred over the network, and since this

source is plain text, it is far less bulky than graphical

bitstreams. Besides, plain text transfers also lend themselves

to greater compression, which network protocols usually take

advantage of. So, having to transfer lesser data over a

network for browsing 3D worlds was a major design motivation

for our browser.

Related Work

Design of Web3D was inspired by the ongoing research on VRML

throughout the world. This research is still in its nascent

stage, and we expect to be one of those involved with this

10

evolving new technology of virtual reality on the Web. Here we

present an overview of some of the VRML browsers currently

available. We use the term “browser” to refer to software

which itself retrieves files across the Internet, and “viewer”

for software which relies on another supporting application to

perform file retrievals.

WebSpace from Silicon Graphics was the first VRML browser to

be released. WebSpace is based on the Inventor library and has

two navigational metaphors (the examiner viewer and the walk

viewer). WebSpace binaries are freely available with a

supported commercial version.

WebView from San Diego Supercomputer Center is a publicly

available VRML browser for SGI systems, available as source

code based on the Inventor library. WebView has four viewing

styles (examiner, fly, plane, walk) and an integrated editing

facility. It is intended as a public development and test

platform, but is limited to SGI platforms under UNIX.

WorldView from InterVista Software is targeted to empower

standard PCs for real-time applications. All network

communications is built into this standalone browser, which

does not rely on a cooperating Web browser. WorldView is

available for all Windows platforms.

WebFX from Paper Software is a VRML browser for the Windows

environment. It incorporates IRC 3D chatting and physically-

based navigation metaphors (including collision detection) as

well as VRML authoring facilities.

i3D from the Center for Advanced Studie, Research and

Development in Sardinia exploits the rendering capabilities of

high-end machines. This VRML viewer includes a preprocessing

optimisation phase and time-dependent rendering facilities to

guarantee constant frame rates even for very large scenes.

11

WebOOGL from the Geometry Center of the University of

Minnesota is available in source code based on Geomview.

Geomview is a program for viewing and manipulating 3D objects

and is designed to act as display unit for external modules

creating geometry. Multiple control windows exist for motion

control, properties and editing. The WebOOGL browser is

available for SGI and SUN OS platforms.

VRweb, a joint project between IICM, NCSA, and the University

of Minnesota, is designed to work with multiple information

systems, namely WWW, Hyper-G, and Gopher, as well as on a

variety of platforms. Unlike other VRML viewers available in

source code, VRweb does not require additional commercial

libraries like OpenInventor or Motif; it is based entirely on

freely available software components.

12

CHAPTER 2

LANGUAGE SPECIFICATION

The language for describing 3D scenes has been developed. It

is an interpreted language, and the interpreter has been

written in C for UNIX. This language aims at minimising the

amount of code a user needs to write in order to describe 3D

scenes in space.

Any 3D scene is composed of objects. Each such object is

called a “node”. A node has the following characteristics:

• What kind of object it is. A node might be a cube, a sphere,
a camera, a light source.

• The parameters that distinguish this node from other nodes
of the same type. For example, each Sphere node might have a

different radius, and different surface properties. These

parameters are called “fields”. A node can have 0 or more

fields.

13

2.1 General Syntax

The syntax chosen to represent these pieces of information is

straightforward -- node names must not begin with a digit, and

must not contain spaces or control characters, single or

double quote characters, backslashes, curly braces, the plus

character or the period.

The '#' character begins a comment -- all characters until the

next newline or carriage return are ignored. The only

exception to this is within string fields, where the '#'

character will be part of the string.

Blanks, tabs, newlines and carriage returns are whitespace

characters wherever they appear outside of string fields.

2.2 Coordinate System

Web3D assumes a cartesian, right-handed, three-dimensional

coordinate system. By default, objects are projected onto a

two-dimensional device by projecting them in the direction of

the positive Z axis, with the positive X axis to the right and

the positive Y axis up. A camera or modelling transformation

may be used to alter this default projection.

The standard unit for lengths and distances specified is

meters. The standard unit for angles is degrees.

2.3 Fields

There are two general classes of fields -- fields that contain

a single value (where a value may be a number or a string),

14

and fields that contain multiple values (three components of a

vector, three components of colour, etc.). Each field type

defines the format for the values it writes. Multiple-valued

fields are written as a series of values separated by

whitespace or commas. No enclosing brackets are required for

these parameters, and no field can have zero number of

parameters.

Fields can be of various kinds:

Boolean - A field containing a single boolean (true or false)

value. Booleans may be written as 0 (representing FALSE), or 1

(representing TRUE).

Color - A triple-value field containing a colour. Colours are

written to file as an RGB triple of floating point numbers in

standard scientific notation, in the range 0.0 to 1.0.

String - A field containing an ASCII string (sequence of

characters). Strings are written to file as a sequence of

ASCII characters in double quotes. Any characters (including

newlines) may appear within the quotes. To include a double

quote character within the string, precede it with a

backslash.

Vector - Field containing a three-dimensional vector. Vectors

are written to file as three floating point values separated

by whitespace or commas.

2.4 Nodes

Web3D's scripting language defines several different classes

of nodes. Most of the nodes can be classified into one of two

categories -- shape or property. Shape nodes define the

geometry in the scene (cubes, cones, spheres, cylinders).

Conceptually, they are the only nodes that draw anything.

15

Property nodes affect the way shapes are drawn. Nodes may

contain zero or more fields. Each node type defines the type,

name, and default value for each of its fields. The default

value for the field is used if a value for the field is not

specified in the source file. The order in which the fields of

a node are read is not important; for example, “Cube { width 2

height 4 depth 6 }” and “Cube { height 4 depth 6 width 2 }”

are equivalent.

Here are the nodes grouped by type. The first group are the

shape nodes. These specify geometry:

AsciiText, Cone, Cube, Cylinder, Sphere

The second group are the properties. These can be further

grouped into properties of the geometry and its appearance,

cameras and lights, and any other constructs that affect the

visualization environment.

Animation, DirectionalLight, Fog, Material,

OrthographicCamera, PerspectiveCamera, PointLight

The Separator node is used to group objects together.

2.5 Description of Nodes

Shape nodes

AsciiText - This node represents strings of text characters

from the ASCII coded character set. The first string is

rendered with its baseline at the top left corner of the

browser's view window. Text is rendered from left to right,

top to bottom in the font set by “font”. Since the rendering

of text is only two-dimensional, the z-coordinate of

16

“position” is ignored. The z-component has been maintained to

allow scope for implementing 3D text some time in the future.

SYNTAX/DEFAULTS

AsciiText

{ font 1 # number of font. Total fonts=4

 size 1 # maximum size=6

 style 1 # 1=regular; 2=italicized

 weight 1 # 1=medium; 2=bold

 color 1 1 1 # RGB triplet

 intensity 1.0 # maximum value 1

 position 0 0 0 # pixel position on screen

 string “Web3D” # string to be displayed

}

The “string” property of AsciiText needs elaboration. This

property is alone responsible for getting some presentable

text rolling on the screen. It handles titles, various fonts

and styles, and hypertexts all in one, so all the other

properties that appear along with this property are near

redundant. The syntax for handling the string property can be

best explained by an example:

AsciiText

{ string “$F4$S6$BGraphics vs Animation :$B$S2$F2\nThe \

 essential difference between $Igraphics$I and \

 $Ianimation$I is the addition of the temporal dimension.\

 $VGraphics <graphics.wrl> is the modelling of objects, \

 whereas $Vanimation <animation.wrl> adds temporal \

 information to these objects.”

}

17

Any text appearing between two “$B”'s is written out in bold,

and between two “$I”'s is written out in italics. “$Fn” is

used to change the number of font to be used for ensuing text,

whereas “$Sn” changes the size of ensuing text. The “$V” is

used to define hypertexts. For example, in the above case,

“Graphics” and “animation” are hypertexts. These will appear

underlined in cyan colour, and clicking on them will bring up

the files “graphics.wrl” and “animation.wrl” respectively for

browsing. Line breaks are given by the “\” character, as in C.

This is a special character that must be escaped in case it

needs to be printed literally. For example, to print a “\” in

the string, one needs to type in “\\”. In the same way, “$” is

a special character and needs to be escaped. So one needs to

type “\$” to display the dollar literally. Same for the quote

sign. However, the “#” is not a special character. It will

appear literally wherever typed. Only outside strings can it

be used to comment out lines.

Cone - This node represents a simple cone whose central axis

is aligned with the y-axis. By default, the bottom face of the

cone is centred at (0,0,0) and has a size of 200 in all three

directions. The cone has a radius of 100 at the bottom and a

height of 200, with its apex at 200 and its bottom at 0. The

cone has two parts: the sides and the bottom. The orientation

of the cone in space is determined by the “tilt” field. This

field takes as parameters three floating point values

representing tilt about the three coordinate axes.

SYNTAX/DEFAULTS

Cone

{ bottomRadius 100 # radius of the flat face

 bottomCentre 0 0 0 # centre of bottomface in space

 height 100 # height of cone

 tilt 0 0 0 # tilt about x,y,z axes in degrees

}

18

Cube - This node represents a cuboid aligned with the

coordinate axes. By default, the cube is centred at (0,0,0)

and measures 200 units in each dimension, from -100 to +100.

SYNTAX/DEFAULTS

Cube

{ width 100

 height 100

 depth 100

 centre 0 0 0 # geometric centre of cube in space

 color 1 1 1 # RGB triplet

 tilt 0 0 0 # tilt about x,y,z axes in degrees

}

Cylinder - This node represents a simple capped cylinder

centred around the y-axis. By default, the cylinder is centred

at (0,0,0) and has a default size of -100 to +100 in all three

dimensions. The cylinder has three parts: the sides, the top

(y = +100) and the bottom (y = -100). One can use the radius

and height fields to create a cylinder with a different size.

SYNTAX/DEFAULTS

Cylinder

{ radius 100

 height 200

 centre 0 0 0 # geometric centre of cylinder

 color 1 1 1 # RGB triplet

 tilt 0 0 0 # tilt about x,y,z axes in degrees

}

19

Sphere - This node represents a sphere. By default, the sphere

is centred at the origin and has a radius of 100.

SYNTAX/DEFAULTS

Sphere

{ radius 100

 centre 0 0 0

 color 0.6 0.6 1

 tilt 0 0 0 # tilt about x,y,z axes in degrees

}

Property nodes

Animation - This node is used to set various parameters

relating to the animation of 3D objects in space. For example,

it can be used to set the duration (in seconds) for which

animation proceeds, and to set the velocity of objects in the

3D scene.

SYNTAX/DEFAULTS

Animation

{ duration 30 # default=15 secs

 velocity 1.0 # min=0; max=1

}

DirectionalLight - This node defines a directional light

source of constant intensity, that illuminates along rays

parallel to a given three-dimensional vector.

20

SYNTAX/DEFAULTS

DirectionalLight

{ on 1 # for TRUE

 direction 0, 0, -1 # Vector

 intensity 1.0 # min=0 max=1

 color 1 1 1 # RGB triplet

}

Fog - This node allows users to simulate fog and haze in the

virtual scene. It allows one to model 3D scenes with greater

visual realism. Users can define the intensity of fog in a 3D

scene by setting certain parameters belonging to this node.

For example, users can define the visible distance in a scene,

so that the lesser this distance, the hazier the scene

becomes. Users can even define the colour of the fog, whose

default is grey (0.6,0.6,0.6). Objects in a scene typically

assume the colour of the fog as they go farther from the

camera. This is quite a crude simulation of fog & haze as

given in Graphics Gems II. Better implementations may be

expected in future releases of Web3D.

SYNTAX/DEFAULTS

Fog

{ visibleDistance 2000

 color 0.6 0.6 0.6

}

Material - This node defines surface material properties. All

objects appearing after this node in the source code will

inherit the properties set by this node.

21

SYNTAX/DEFAULTS

Material

{ gloss 1 # 0=dull; 1=glossy

 reflectiveness 1 1 1 # RGB triplet

 shininess 1 1 1 # RGB triplet

}

OrthographicCamera - An orthographic camera defines a parallel

projection from a viewpoint. This camera does not diminish

objects with distance, as a perspective camera does. The

viewing volume for an orthographic camera is a rectangular

parallelepiped (a box). A camera can be placed in a Web3D

world to specify the initial location of the observer when

that world is entered. Web3D will typically modify the camera

to allow a user to move through the virtual world

interactively.

SYNTAX/DEFAULTS

OrthographicCamera

{ position 0 0 1000 # in space

 orientation 0, 0, -1 # direction of view

}

PerspectiveCamera - A perspective camera defines a perspective

projection from a viewpoint. The viewing volume for a

perspective camera is a truncated right pyramid. By default,

the camera is located at (0,0,1) and looks along the negative

z-axis; the position and orientation fields can be used to

change these values. The focal distance of the camera is

typically the distance between the centre of projection and

22

the view plane. So greater this distance, larger the object

appears.

SYNTAX/DEFAULTS

PerspectiveCamera

{ focalDistance 300

 position 0 0 1000 # in space

 orientation 0, 0, -1 # direction of view

}

PointLight - This node defines a point light source at a fixed

location in space. A point source illuminates equally in all

directions; that is, it is omni-directional.

SYNTAX/DEFAULTS

PointLight

{ on 1 # 0=off; 1=on

 intensity 1 # min=0; max=1

 location 0 0 1000 # in space

}

23

2.6 An Example

Code for describing a red sphere revolving in circular orbit

about the y-axis, as viewed by an approaching camera. The

scene is lit by a parallel light source throwing light

parallel to vector (1,0,-1) in three-dimensional space

Separator {

light the scene

DirectionalLight

{ on 1 # light source is switched on

 direction 1, 0, -1 # shining from viewer into scene

}

set up the camera

PerspectiveCamera

{ focalDistance 200

 position 0 0 800-50t # approaching along -z direction

 orientation 0, 0, -1

}

set up animation parameters

Animation

{ duration 30 # seconds

 velocity 1 # min=0; max=1

}

render a sphere

Sphere

{ radius 100

 centre 300cos(t) 0 300sin(t) # revolving about y-axis

 color 1 0 0 # red sphere

}

} #end

24

CHAPTER 3

THE INTERPRETER

The interpreter, developed in C for UNIX, has two major

components – the lexical analyser and the parser.

3.1 The Lexical Analyser

The lexical analyser is responsible for checking for valid

“tokens” in the source file that needs to be interpreted. A

token is the smallest recognised string of characters in the

language specifications. For example, a “{” is a recognised

token. Similarly, all objects such as “Separator”, “Cone”,

“radius”, etc. are tokens. So if a “Cobe” appears in the input

source file in place of a “Cone”, it will be rejected by the

lexical analyser, and the program will report an error

message.

Naturally, for the purpose of validating and invalidating

tokens, the system requires a sort of dictionary for

reference. This dictionary is called the “symbol table”, and

25

for our purposes, it is implemented as arrays of strings, one

containing the list of valid nodes, and the other containing

the list of valid fields, as shown below:

char nodes[MAX_NODES][20] =

{ “Separator”, “AmbientLight”, “Animation”, “AsciiText”,

 “Cone”, “Cube”, “Cylinder”, “DirectionalLight”, “Fog”,

 “Material”, “OrthographicCamera”, “PerspectiveCamera”,

 “PointLight”, “Sphere”, “SpotLight”, “TextProperties”

};

char fields[MAX_FIELDS][20] =

{ “bottomCentre”, “bottomRadius”, “centre”, “color”,

 “depth”, “direction”, “duration”, “focalDistance”,

 “font”, “gloss”, “height”, “intensity”, “location”, “on”,

 “orientation”, “position”, “radius”, “reflectiveness”,

 “roughness”, “shininess”, “size”, “solid”, “string”,

 “style”, “tilt”, “velocity”, “visibleDistance”, “weight”,

 “width”

};

The tokens are case-sensitive. For example, whereas Sphere is

a valid token, sphere is not. Each token has a unique integer

value associated with it. Since integer comparison takes much

less time as compared to string comparisons, this method is

preferred. For the purpose of associating integer values with

tokens, we define “macros” for each of the tokens. These are

placed in a separate header file called “tokens.h”. A section

of the file is reproduced below:

26

tokens.h:

/* Single character tokens */

 /* token value for */

#define ERROR -1 /* unrecognised input */

#define EOI 0 /* end of input */

#define LB 1 /* left braces */

#define RB 2 /* right braces */

#define LP 3 /* left parenthesis */

#define RP 4 /* right parenthesis */

#define NUMBER 5 /* real numbers */

#define TEXT 6 /* text strings */

#define PLUS 7

#define MINUS 8

#define MULTIPLY 9

#define DIVIDE 10

#define EXP 11

#define COS 12

#define SIN 13

#define 14 /* time variable 't' */

#define COMMA 15

#define EXPRESSION 16

/* Macros for objects (nodes) */

#define SEPARATOR 17

#define AMBIENTLIGHT 18

#define ANIMATION 19

#define ASCIITEXT 20

#define CONE 21

#define CUBE 22

#define CYLINDER 23

#define DIRECTIONALLIGHT 24

.....

27

The lexical analyser translates the input stream into a

sequence of tokens -- a form that is more manageable by the

parser. It uses a simple, buffered input system, getting 512

bytes at a time from the input stream, and then isolating

tokens one at a time. Another 512-byte buffer is fetched only

when the current buffer is exhausted. The main advantage of a

buffered system is speed. Computers like to read data in large

chunks. Generally, the larger the chunk, the greater the

throughput. This is especially so when the buffer size gets

above the size of a disk cluster. Reading from unbuffered I/O

needs very frequent disk accesses, which can slow the program

down considerably.

Another important issue that has to do with speed is the

lookahead and pushback feature. Lexical analysers often have

to know what the next input character is going to be without

actually reading past it. They must “look ahead” by some

number of characters. Similarly, they often need to read past

the end of the token in order to recognise it, and then “push

back” the unnecessary characters onto the input stream.

Consequently, there are often extra characters that must be

handled specially. The special handling is both difficult and

slow when one is using single-character input. Going

backwards, however, is simply a matter of moving a pointer.

The Finite State Machine for lexical analysis

Figure 1 shows a part of the transition diagram for our Finite

State Machine (FSM) that recognises the tokens as valid

sequences of characters:

28

Figure 1 Transition diagram of FSM (in part)

The circles are individual states marked with the state

number, which can be any arbitrary number that identifies the

state. State 0 is the start state, and the machine is

initially in this state. From the start state, reading a 'C'

from input causes a transition to state 1. From state 1, an

'o' gets the machine to state 2, and a 'u' gets the machine to

state '5', and so on. The self-loops around the accepting

states indicate the action associated with the acceptance of

the token. This is the integer value to be returned to the

parser.

3.2 The Parser

As the name specifies, this function “parses” the input

stream, i.e. it scans the input stream character by character.

It calls the lexical analyser repeatedly to verify if strings

scanned are valid tokens. Then the parser checks if the

sequence of these tokens is according to the rules of the

language. These rules are defined by a grammar, which

29

specifies ALL possible and valid sequences of tokens in a

source file to produce a meaningful program.

For example,

 Cube { radius 1 }

contains all valid tokens, but even then the property radius

makes no sense for a cube. It is the work of the parser to

report this error as soon as it comes across the radius

property for a Cube.

The parser generates no code, it just parses the input. The

implementation is in the form of a “recursive-descent parser”,

i.e. it parses the input stream with the help of a set of

highly recursive functions. For example, the production:

 Expression → Expression + Expression

is implemented by the following subroutine:

30

void expression()

{

 advance(); /* read the next token in the stream */

 if (operator()) /* check if token is an operator */

 {

 advance(); /* advance to the next token */

 expression();

 }

 else

 error(); /* report a parse error */

}

int operator()

{

 return (((match(PLUS)) || (match(MINUS)) ||

 (match(MULTIPLY)) || match(DIVIDE)) ||

 (match(EXP)));

}

The function match() returns a boolean value. If the token

passed as argument is matched, it returns “true”, otherwise it

returns “false”.

31

3.3 The Grammar

Web3D's 3D-scene-description language is based on the

following grammar:

Separator → Node { Parameters } | Separator

Node → AsciiText | Cube | Cone | Sphere | ...

Parameters → Field Value | Field Expression | Parameters

Expression → Expression + Expression |

 Expression - Expression |

 Expression * Expression |

 Expression / Expression |

 Expression ^ Expression |

 sin(Expression) |

 cos(Expression) |

 (Expression) |

 Value |

 t

Field → radius | height | width | color | ...

Value → Number | -Number | Number.Number

Number → Digit | Number

Digit → 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9

The parser is a straightforward implementation of this

grammar.

32

CHAPTER 4

MODELLING THREE-DIMENSIONAL SPACE

In order to describe a scene consisting of a set of

geometrical objects placed in particular positions and

orientations in three-dimensional space, we define an

arbitrary but fixed coordinate system for three-dimensional

space -- this we call the ABSOLUTE system. Next, the

coordinates of the vertices of a particular object are defined

in some simple way, usually about the origin of the ABSOLUTE

system. This we call the SETUP position for that object.

Polygonal facets within the object are defined by specifying,

and giving the order of, the vertices forming their corners.

Each particular object must be moved from its SETUP position

to the desired position in space, its ACTUAL position. The

matrix which relates the SETUP and ACTUAL positions for a

given object may be calculated using one, or a combination, of

the transformations described above. The object is moved by

pre-multiplying the column vector form of each of its defining

vertices with the same SETUP to ACTUAL matrix. The vertex

coordinates are still specified with respect to the ABSOLUTE

system, whether they are in SETUP or ACTUAL position. Facet

33

relationships such as co-planarity and the order of vertices,

are preserved with the transformed vertices. Naturally,

different objects will have unique SETUP to ACTUAL matrices.

In order to illustrate further our algorithm, we will start

our description by using a single cube. The SETUP vertex

coordinates of the cube are defined to be the 8 vertex triples

(1,1,1); (1,-1,1); (1,-1,-1); (1,1,-1); (-1,1,1); (-1,-1,1);

(-1,-1,-1) and (-1,1,-1); numbered 1 through 8, as shown in

Figure 2. The six facets are thus the set of four vertices

1,2,3,4; 1,4,8,5; 1,5,6,2; 3,7,8,4; 2,6,7,3; and 5,8,7,6. The

peculiar ordering of the vertex indices in the facet

definitions is to ensure that, when viewed from outside, the

vertices are in anti-clockwise orientation. This is important

so that we can decide which facets are visible to the

observer, and which are not. If the outward-bound normal of a

polygonal surface (a plane) makes an acute angle with the

direction of view, the surface is visible, otherwise it is

not, and must not be rendered. Matrix transformations are then

used to calculate the ACTUAL position of the cube in space,

relative to the ABSOLUTE system.

Figure 2 SETUP coordinates of a cube

34

4.1 The Observer

We now introduce the concept of an observer. Our eventual aim

is to represent, in the graphics viewport, a three-dimensional

scene as viewed by a person standing at a given position and

looking in a given direction, with position and direction

specified relative to the ABSOLUTE system. Imagine someone

having a graphics screen firmly fixed in front of their face,

and as they walk, run, jump, fly, somersault through space,

they can only view that space through the screen. It is these

images that we will simulate on the graphics viewport, so that

the observer sitting comfortably in front of the screen can

experience the same sights as our energetic “space-traveller”.

We shall assume that the information about the scene (the

model, the observer, and the light source) will be stored

initially in terms of 3D vector coordinates in the ACTUAL

position relative to the ABSOLUTE coordinate system. The eye

of the observer (the camera) is placed at a position in space,

defined by another 3D vector, relative to the ABSOLUTE axis

looking in a fixed direction in space.

Matrix transformations are used to calculate the coordinates

of the vertices relative to a new triad of axes, called the

OBSERVER system, which has the camera at the origin and

direction of view along the negative z-axis. These new values

are called the OBSERVED position of the vertices of the

object.

4.2 Orthographic Projection

A “parallel” projection is characterised by having parallel

lines of projection, and is a projection under which points in

three-dimensional space are projected along a fixed direction

onto any plane not parallel to those lines. The orthographic

projection is a special case whereby the lines of projection

35

are perpendicular to the plane. We can choose the view plane

to be any plane with normal vector along the line of sight

(the line of projection). This means that we can take any

plane parallel to the x/y plane of the OBSERVER system, and

for simplicity we choose the plane through the origin given by

the equation z=0. An OBSERVED vertex is thus projected onto

the view plane by the simple expedient of setting its z-

coordinate to zero, and thus any two different points with

OBSERVED co-ordinates (x,y,z) and (x,y,z') say (where z ≠ z'),

are projected onto the same point (x,y,0) on the view plane,

and hence onto the point (x,y) in the WINDOW system.

4.3 Perspective Projection

The orthographic projection has the property that parallel

lines in three-dimensional space are projected into parallel

lines onto the view plane. Although they have their uses in

certain scientific and architectural applications, such views

do look odd. Human comprehension of spatial position is based

on perspective. Hence our brains attempt to interpret

orthographic figures as if they are perspective views. It is

obviously essential to produce a projection which displays

perspective phenomena -- that is, parallel lines should meet

on the horizon, and an object should appear smaller as it

moves away from the observer.

What is perspective vision?

To produce a perspective view, we introduce a very simple

definition of what we mean by vision. We imagine every visible

point in space sending out a ray which enters the eye.

Naturally the eye cannot see all of space, it is limited to a

cone of rays which fall on the retina, the so-called cone of

vision, which is outlined by dashed lines of Figure 3. These

rays are the lines of projection. the axis of the cone is

36

called the direction of vision. In what follows, we assume

that all co-ordinates relate to the OBSERVER right-handed

coordinate system, with the eye at the origin and the

direction of vision identified with the negative z-axis.

We place the view plane (which we call the perspective plane

in this special case) perpendicular to the axis of the cone of

vision at a distance d from the eye (that is, the plane z=-d).

In order to form the perspective projection we mark the points

of intersection of each ray with this plane. Since there is an

infinity of such rays, this appears to be an impossible task.

Actually the problem is not that great because we need only

consider the rays which emanate from the important points in

the scene, in particular the corner vertices of polygonal

facets. Once the projections of the vertices onto the

perspective screen have been determined, the problem is

reduced to that of representing the perspective plane (the

view plane) on the graphics viewport. A two-dimensional

coordinate system, the WINDOW system, is defined on the view

plane together with a rectangular window which is identified

with the viewport. The image is drawn by joining the pixels

corresponding to the end-points of lines or the vertices of

facets.

Calculation of the perspective projection of a point

Let the perspective plane be at a distance d from the eye.

Consider a point p = (x,y,z) (with respect to the OBSERVER

system) which sends a ray into the eye. We need to calculate

the point of intersection, p’ = (x',y',-d), where this ray

cuts the view plane (the z=-d plane), and thus we determine

the corresponding WINDOW coordinates (x',y'). First consider

the value of y' by referring to Figure 3. By similar triangles

we see that y'/d = y/|z|, that is, y' = -y*d/z (the points in

front of the eye in the OBSERVER system have negative z-

coordinates).

37

Similarly, x' = -x*d/z and hence p' = (-x*d/z, -y*d/z). The

projection makes sense only if the point has negative z

coordinate (that is, it does not lie behind the eye). We

assume that the eye is positioned in such a way that this is

true for all vertices.

Figure 4 illustrates the difference between orthographic and

perspective projections. Perspective projections apparently

diminish size and speed with depth, and so appear more

natural, while orthographic views appear unrealistic and

distorted.

Figure 3 Perspective projection of a point

38

Figure 4 Orthographic and perspective views of a cylinder

39

4.4 Visual Realism through Shading

So far we have considered projections of three-dimensional

objects on to the graphics viewport. But in order to produce

visually realistic images, one needs to perform shading of the

surfaces of these objects depending on the position and

intensity of light sources, and how light interacts with the

various objects in a scene. Smooth shading attains the highest

form of visual realism.

Vision is a perception of light reflected onto the retinas of

our eyes. Different materials reflect light in different ways,

enabling us to distinguish between them, but all that we

actually “see” is light. The purpose of a shading model is to

calculate what light is reflected to the eye from each visible

point in a scene, and then to use this information, by

selecting a suitable form of display for the corresponding

pixel, to create realistic images of the scene. Thus there are

two distinct problems to consider. First, a mathematical model

must be developed to provide the information needed about the

light reflected from points in a scene; and second, this

information must be interpreted for application to new facet

display functions.

We assume that light consists of an infinite number of closely

packed “rays” or “beams” which we may represent as vectors.

There are two models which have been used for a light source

in our browser. The point source model assumes that all rays

emanate from a single point and may take any direction from

this point. This idea corresponds to the properties of a

single light bulb, or, on a larger scale, the sun.

Paradoxically, the sun may also be considered to fall into the

second category -- parallel beam illumination -- which models

the illumination produced by a point light source “infinitely”

far from the object being illuminated or, alternatively, by a

distributed light source. This model assumes that all rays

40

have a common direction, as with fluorescent lamps. Figure 5

shows one sphere illuminated by a point light source and

another with a parallel light source.

Either a parallel beam or a point light source may be

represented by a single vector specified in relation to the

OBSERVER coordinate system. In the parallel case the vector is

treated as a point vector from which the direction can be

calculated. The position of a point light source is specified

by a vector s, and in both cases the direction of the light

illuminating a point p on the surface is called vector -l.

Note the minus sign -- we adopt this notation because in most

cases we use the direction vector pointing out of the surface

in the opposite direction: that is, vector l. In order to

calculate the light reflected from a point p on a surface we

need to know the normal to the surface at p, which we call n,

together with a direction vector from point p on the surface

towards the light source. For the parallel beam model, finding

this direction is easy -- it is the vector l for every point

p. For the point source model, the required vector is s-p,

which, for consistency, we shall also call l. For calculations

involving specular reflection (see later) we also need to know

the position of the camera, which, of course, we have placed

at the origin of the OBSERVER coordinate system.

Quantifying light -- intensity and colour

Rays of light may vary in brightness or intensity. Ultimately,

we wish to calculate the intensity of the light which is

reflected to the eye from a point in a three-dimensional

scene, and to interpret this information for display on the

graphics screen. In order to do this, we must be able to map

the measure of intensity onto the set of colours or shades

available for display. The range of colours on any graphics

display is finite -- there is a limit on brightness. We must

therefore impose a maximum value on intensity, so we measure

intensity of light using a floating point value between 0

41

(representing darkness) and 1 (representing maximum

brightness).

Figure 5 Parallel and point light sources

42

White light consists of a wide spectrum of waves of varying

wavelengths, each corresponding to light of a different

colour, ranging from red light at one end of the spectrum of

visible wavelengths to violet at the other. In our somewhat

simplistic conception of this idea we assume that light can be

represented by three components -- red, green, and blue. We

quantify light in terms of the intensities of each of these

three components. Each of these intensities takes a floating

point value between 0 and 1. In white light these components

are present in equal measure. A value of 1 for Ired, 0 for

Igreen, and 0 for Iblue implies bright red light, whereas 0 for

Iblue and 0.5 for both Ired and Igreen implies a subdued yellow

light. The “colour” of the light is determined by the triple

(Ired, Igreen, Iblue). A colour (α*Ired, α*Igreen, α*Iblue) for some

value of α, 0≤α≤1, is said to be a “shade” of (Ired, Igreen, Iblue)

with intensity α.

The colour of a surface

All materials have properties relating the intensity of light

which they reflect to that of light striking them (incident

light). We call these properties the “reflective coefficients”

of the material. We divide the properties into three

components corresponding to the red, green, and blue

components of the light. The values of the Rred, Rgreen, and Rblue

coefficients represent respectively the proportion of the

incident red, green, and blue light which is reflected, each

taking a value between 0 and 1. A value of 1 for Rred implies

that all incident red light is reflected, while values of 0 or

0.5 imply respectively that none or half the incident red

light is reflected.

The absolute colour of a material is determined by the

relative magnitudes of the Rred, Rgreen, and Rblue coefficients.

For a white material all three are equal to 1, for a black

material all are 0, while any material with equal Rred, Rgreen,

and Rblue values between 0 and 1 is a shade of grey. A large Rred

43

coefficient combined with small Rgreen and Rblue gives a reddish

colour and so on.

The apparent colour of a point on a surface is the colour of

light reflected to the eye from that point on the surface.

This is obviously dependent on the light illuminating the

surface (including ambient light) as well as on the absolute

colour and other properties of the surface (for example,

gloss), but in the simple case of a dull (matt) surface

illuminated by white light, the apparent colour is always a

shade of the absolute colour.

Reflection of Light

There are two distinct ways in which light is reflected from a

surface -- diffuse reflection and specular reflection. All

surfaces exhibit diffuse reflection. When light hits a matt

surface, it is scattered in all possible directions (we assume

uniformly), so that the intensity of light reflected to the

eye in this way is independent of the position from which the

surface is viewed. We then see an apparent colour for the

surface which is dependent on both the reflective colour

coefficients of the surface and the colour of the incident

light.

Glossy surfaces also exhibit specular reflection, the effect

which produces the highlights clearly observed on the shiny

surface of a metallic sphere illuminated by a light source. In

this case, most of the light is reflected off the surface --

very little light is absorbed, and so the colour of the

specularly reflected light is not dependent on the reflective

coefficients of the surface.

Specular reflection is governed by two parameters which we

call m and s. The parameter m is a measure of the gloss of the

surface material, or the specular reflection exponent, and

refers to the sharpness of fall-off in intensity of reflection

44

along directions deviating from reflection direction r. It

takes an integer value between 1 and 400 theoretically, but

for our purposes we found that a value of 10 gave sufficiently

glossy surfaces. In the language specifications, the value of

gloss varies between 0 and 1, which is actually scaled to a

value between 0 and 10.

Not all light is reflected straight to the eye. Diffuse

reflection, for instance, scatters light uniformly in all

directions. This results in a low level of ambient light

illuminating any scene. This is background light reflected

equally in all directions from the ground, walls, and other

exposed surfaces. We assume that ambient light illuminates all

surfaces of the model equally and ensures that those surfaces

which are not exposed to a genuine light source do not appear

perfectly black. The colour of ambient light is, of course,

dependent on the reflective coefficients of the surfaces from

which it has been reflected.

In the illumination model we have used, we assume that all

incident light (both source and ambient) is white light,

thereby consisting of equal measures of red, green, and blue

components. The intensity of ambient light is a floating point

number between 0 and 1. This value can be set in the source

code for describing 3D scenes. It is usually taken to be 0.2,

i.e. 20% of the light in a scene comes from an ambient light

source. We call this intensity Ia. The maximum intensity of

light that may illuminate a scene is 1. This includes both

ambient light and light emanating directly from a source. The

intensity contribution of incident light from a source is

therefore limited to (1 - Ia). The intensity of light emitted

by a source is given a value between 0 and 1, called Is, and

the incident light from this source, therefore, has the

intensity value given by Is*(1 - Ia).

45

4.5 Developing a Shading Model

The ideal shading model calculates the precise colour of light

reflected into the eye from any visible point in a scene.

Therefore, such a model is required to determine the

intensities of red, green, and blue components of this colour

for any given point. This we call a colour shading model.

For our shading model, we use a number of parameters called

material properties. These are the properties that govern the

way in which a material reflects light -- its reflective

coefficients, gloss, shine, etc. For our simple intensity

shading model, we use just one attribute, R say, with a value

between 0 and 1, which represents a general reflective

coefficient. This attribute is composed of three reflective

coefficients, one for each primary colour. These are the RGB

reflective coefficients Rred, Rgreen, and Rblue.

Ambient light

We begin by modelling the reflection of ambient light which

illuminates all surfaces equally, including those facing away

from the genuine light source. Rays of ambient light strike a

surface from all directions and are reflected uniformly in all

directions. The intensity of light reflected to the eye (Iamb)

is therefore independent of all but the intensity of the

ambient light and the reflective coefficient of the surface

with respect to this light.

For our colour shading model, we calculate all three

components of ambient light as follows:

Iamb(red) = Rred x Ia (4.1)

Iamb(green) = Rgreen x Ia (4.2)

Iamb(blue) = Rblue x Ia (4.3)

46

Diffuse reflection

Diffuse reflection is modelled using Lambert's Cosine Law.

This relates to the intensity of light striking a point on the

surface to the cosine of the angle θ between the normal to the

surface at that point and the vector from the point to the

light source. Naturally, if the angle θ is greater than a right

angle then the surface at p faces away from the source, and so

no light reaches the surface, and consequently none is

reflected. In this case Idiff works out to be less than 0, as we

shall see. It must be set to 0 in such cases.

The model for diffuse reflection has been improved by the

inclusion of a distance factor -- that is, the intensity of

light from a given source falls off with increasing distance

from the source. At a point that is a distance d from a source

producing light of intensity Is, the light has intensity

proportional to Is/d2. But this leads to a sharp and unnatural

fall-off in intensity as d increases. So a linear fall-off in

intensity has been used in our programs, i.e. the light now

has intensity proportional to Is/(d+C) where C is some constant

value that must be set experimentally to give aesthetically

pleasing results.

The three components of diffuse light are calculated as

follows:

Idiff(red) = Rred x Is x (1-Ia) x cos(θ) (4.4)

Idiff(green) = Rgreen x Is x (1-Ia) x cos(θ) (4.5)

Idiff(blue) = Rblue x Is x (1-Ia) x cos(θ) (4.6)

47

Specular reflection

Specular reflection, as mentioned previously, is exhibited by

glossy surfaces. We have used the model developed by Bui Tong

Phong. This method approximates the intensity of specular

reflection at a point by using the value of cos(m x α), where

α is the angle between the direction of perfect reflection of

light from the point and the vector from that point to the

eye, as shown in Figure 6, and m is the gloss of the surface

material.

Figure 6 Specular reflection

If r is the direction in which light is reflected from the

surface and -p is the vector from p to the eye, then the value

of cos(α) is given by cos(α) = r.(-p)/(|r|x|p|). We could have

taken advantage of elementary laws of trigonometry to simplify

this calculation, which enables us to calculate cos(α) without

first calculating r. But there is an alternative method that

reduces the number of scalar products required, by one. And we

have used that method. Here, we calculate the average of the

two vectors p and l, i.e.

 q = -p/|p| + l/|l|

48

Then α/2 is the angle between q and n, and so

 cos(α/2) = n.q/(|n|x|q|)

Knowing that cos(α) = 2cos2(α/2)-1, we may calculate cos(α).

Specular reflection can only be used with a colour shading

model, like we have used. It cannot be used with an intensity

shading model. This is because the apparent colour of a point

near, but not at, a highlight is neither a shade of the

absolute colour of the surface nor a shade of the colour of

the light source, but rather it is a mixture of the two

colours. It should be pointed out that Bui Tong Phong's model

does not strictly simulate the specular reflection of light,

but simply produces an effect of similar appearance.

Each colour component in the complete colour shading model is

calculated by summing the corresponding components of the

contributions from reflected ambient light, diffuse

reflection, and specular reflection. If any colour component

exceeds 1, then naturally it must be set to 1. Since we have

implemented polygon-shading of 3D objects, this colour

component is then used to fill one out of all the polygons

that constitute a primitive. Colour value calculations must be

done for each visible polygon on the surface of the primitive.

Figure 7 shows the flat-shaded model of a cube rendered in the

drawing area of our Web3D browser. The cube consists of six

four-sided polygons in all, with only three polygons visible

at any time. Figure 8, Figure 9, and Figure 10 show

respectively flat-shaded models of cones, a cylinder, and a

sphere. Figure 11 shows the hidden line model of a cube.

Figure 12 simulates the solar eclipse, with the light source

placed directly behind a yellow sphere. Figure 13 and Figure

14 show some 3D worlds rendered with the help of the four 3D

geometric primitives, mainly cuboids.

49

Figure 7 Rendering of a cube

50

Figure 8 Polygonal rendering of a cone

51

Figure 9 Polygonal rendering of a cylinder

52

Figure 10 Polygonal rendering of a sphere

53

Figure 11 Hidden line rendering of a cube

54

Figure 12 The solar eclipse

55

Figure 13 Flatshaded rendering of a billiard table

56

Figure 14 Flatshaded rendering of a boulevard

57

CHAPTER 5

3D ANIMATION

Web3D features both static as well as animated worlds. For

static scene-descriptions, the size and position of objects in

space is fixed. However, with the help of time-variant

functions, Web3D is capable of displaying simple real-time

animations.

5.1 Basic Implementation

Web3D is capable of interpreting time-varying values, giving

rise to animated scenes. These kind of real-time animations

belong to a class of animations called procedural animations

where mathematical models define the geometry, shape, size,

and path of objects as explicit functions of time. For

example, we can have an object making periodic movements about

an axis by defining its coordinates as trigonometric functions

of time. Trigonometric functions supported by Web3D are sin()

and cos(), and all expressions derived from them. Evaluation

of expressions is recursive, as defined by the grammar of

Web3D.

58

For example, a sphere revolving in an elliptical orbit can be

defined by keeping its x-coordinate acos(t), its z-coordinate

bsin(t), its y-coordinate remaining constant. This animation

routine can be implemented with the following source code:

The following code describes a red sphere revolving in an

elliptical orbit about the y-axis, as viewed by a stationary

camera. major axis = 500, minor axis = 300

Separator {

light the scene

DirectionalLight

{ on 1 # light source is switched on

 direction 1, 0, -1 # shining from viewer into scene

}

set up the camera

PerspectiveCamera

{ focalDistance 200

 position 0 0 1000

 orientation 0, 0, -1

}

define animation parameters

Animation

{ duration 30 # seconds

 velocity 1 # min = 0; max = 1

}

render a sphere

Sphere

{ radius 100

 centre 500cos(t) 0 300sin(t) # revolving about y-axis

 color 1 0 0 # red sphere

}

} # end

59

In the above code, the x-coordinate and the z-coordinate of

the sphere's position are time-variant, so that as time

progresses, the sphere appears to revolve in an elliptical

orbit about the y-axis. The time-variant expressions need to

be parsed, converted to postfix, and then calculated for

increasing values of t. The scene needs to be redrawn every

time the value of t changes. The rate at which the scenes are

redrawn is determined by the “velocity” parameter defined for

the “Animation” construct. This floating point parameter takes

0 as its minimum value and 1 as its maximum value. Its value

is mapped inversely to the time duration after which the

rendering routine will be called again. This recursive

(callback) feature is handled automatically by the Timeout

functions provided by the X11 library. When the rendering

function is called again, it redraws the scene with freshly

calculated values of time and other necessary variables. The

duration parameter belonging to Animation node sets the time

(in seconds) for which the animation must proceed.

While parsing an input file, the interpreter typically checks

for any time-variant properties. In case there are no time-

variant properties, the scene is drawn straightaway. Otherwise

the expressions are stored in a buffer, and after the first

parse, a loop is executed, which evaluates the function with

values of time-variable 't' interpolated from 0 to the desired

time, in steps of say 0.5. These values are all stored in a

temporary buffer, and then the animation process begins. The

buffer is used to obtain the values of the position,

orientation etc. of objects at any point of time while the

animations are in progress. This greatly speeds up the

animation process, since the browser has to then only

concentrate on placing the objects correctly in space during

animation, rather than having to evaluate the expressions

during the animation process. Since the implementation of

animations is an object-oriented approach, the user is free to

carry on his or her normal operations with the browser while

the animation proceeds in the background.

60

5.2 Introduction to Quaternions

Quaternions provide an effective and convenient means for

representing the orientation of an observer with good

behaviour during interpolation. Quaternions are complex

numbers with one real component and three imaginary

components. The imaginary units are i, j, and k, and have the

following properties:

i2 = j2 = k2 = -1

ij = k and ji = -k

with the cyclic permutation i→j→k→i.

Quaternions can be represented as:

q = a + bi + cj + dk.

For our purposes we shall use the condensed notation:

q = (s,v)

where

(s,v) = s + vxi + vyj + vzk

s is thought of as the scalar part of the quaternion and v the

vector part with axes i, j, and k. Using the above rules it is

easy to derive the following properties. The multiplication of

two quaternions:

q1 = (s1, v1) and q2 = (s2, v2)

is given by:

61

q1q2 = (s1s2 - v1.v2, s1v2 + s2v1 + v1*v2)

The multiplication of two quaternions is thus a quaternion.

Mathematically, we have defined a group. Stated simply, a

group is just a set of elements with a rule defining their

multiplication such that the result of this multiplication is

itself an element of that group. Groups can be constructed

completely arbitrarily, though a surprising number of groups

are relevant to the physical world. We shall see that a

subgroup of the quaternion group is closely related to the

group of rotation matrices.

Note that except for the cross product term at the end of the

previous equation, it bears a strong similarity to the law of

complex multiplication:

(a1 + ib1)(a2 + ib2) = (a1a2 - b1b2) + i(a1b2 + a2b1)

The cross product term has the effect of making quaternion

multiplication noncommutative.

We define the conjugate of the quaternion:

q = (s,v) to be q = (s,-v)

The product of the quaternion with its conjugate defines its

magnitude:

qq = s2 + |v|2 = |q|2

Finally, take a pure quaternion (one that has no scalar part):

p = (0,r)

and a unit quaternion

q = (s,v) where qq = 1

62

and define

Rq(p) = qpq-1

Using our multiplication rule, and the fact that q-1 = q for q

of unit magnitude, this expands to:

Rq(p) = (0, (s2 - v.v)r + 2v(v.r) + 2svxr) (5.1)

This can be simplified further since q is of unit magnitude,

and we can write:

q = (cos θ, sin θn) |n| = 1

Substituting into Equation (5.1) gives:

Rq(p) = (0, (cos2θ - sin2θ)r + 2sin2θn(n.r) + 2cosθsinθnxr)

 = (0, cos2θr + (1-cos2θ) n(n.r) + sin2θnxr) (5.2)

From this, we can say that the act of rotating a vector r by

an angular displacement (θ,n) is the same as taking this

angular displacement, “lifting” it into quaternion space, by

representing it as the unit quaternion (cos(θ/2),sin(θ/2)n) and

performing the operation q()q-1 on the quaternion (0,r). We

could therefore parametrize orientation in terms of the four

parameters:

cos(θ/2), sin(θ/2)nx, sin(θ/2)ny, sin(θ/2)nz

using quaternion algebra to manipulate the components.

In practice this would seem an extremely perverse way of going

about things were it not for one very important advantage

afforded by the quaternion parametrization. Two quaternions

multiplied together, each of unit magnitude, will result in a

63

single quaternion of unit magnitude. If we use quaternions to

represent rotations, then this translates to two successive

rotations producing a single rotation.

Now let us see how quaternions work in practice. One single x-

roll of π is represented by the quaternion:

(cos(π/2), sin(π/2) (1,0,0)) = (0, (1,0,0))

Similarly, a y-roll of π and a z-roll of π are given by

(0,(0,1,0)) and (0,(0,0,1)) respectively. Now the effect of a

y-roll of π followed by a z-roll of π can be represented by the

single quaternion formed by multiplying these two quaternions

together:

(0,(0,1,0)) (0,(0,0,1)) = (0,(0,1,0) x (0,0,1))

 = (0,(1,0,0))

which is a single x-roll of π. From this we can see that the

cross product term in Equation (5.2) can be thought of as

correcting for the interdependence of the separate axes that

is ignored by Euler's angle notation. Euler angles refer to a

family of methods by which an object is rotated successively

three times around three fixed axes to produce a composite

rotation. An additional advantage afforded by using

quaternions is that the gimbal lock singularity, which is a

consequence of using three parameters to parametrize

orientation, disappears.

64

5.3 Interpolating using Quaternions

Given the superiority of quaternion parametrization over other

ways of parametrization, this section covers the issue of

interpolating rotation in quaternion space. Consider an

animator sitting at a workstation and interactively setting up

a sequence of key orientations by whatever method is

appropriate in the Web3D environment. This is usually done

with the principal rotation operations, but now the

restrictions that were placed on the animator when using Euler

angles, namely using a fixed number of principal rotations in

a fixed order for each key, can be removed. In general, each

key will be represented as a single rotation matrix. This

sequence of matrices will then be converted into a sequence of

quaternions. Interpolation between key quaternions is

performed and this produces a sequence of in-between

quaternions, which are then converted back into rotation

matrices. The matrices are then applied to the object. The

fact that a quaternion interpolation is being used is

transparent to the animator.

Moving into and out of quaternion space

The implementation of such a scheme requires us to move into

and out of quaternion space, that is, to go from a general

rotation matrix to a quaternion and vice versa. It can be

shown that the effect of taking a unit quaternion:

q = (cos(θ/2), sin(θ/2)n)

and performing the operation q()q-1 on a vector is the same as

applying the following rotation matrix to that vector:

65

 1-2Y2-2Z2 2XY-2WZ 2XZ+2WY 0

 2XY+2WZ 1-2X2-2Z2 2YZ-2WX 0

 2XZ-2WY 2YZ-2WX 1-2X2-2Y2 0

 0 0 0 1

where the quaternion (cos(θ/2), sin(θ/2)n) is written as

(W,(X,Y,Z)). By these means then, we can move from quaternion

space to rotation matrices.

The inverse mapping from a rotation matrix to a quaternion is

only slightly more involved. All that is required is to

convert a general rotation matrix:

 M00 M01 M02 0

 M10 M11 M12 0

 M20 M21 M22 0

 0 0 0 1

into the matrix format directly above. The resulting

quaternion is trivially (W,(X,Y,Z)). Given a general rotation

matrix, the first thing to do is to examine the sum of its

diagonal components Mii where 0≤i≤3. This is called the trace

of the matrix. From the above format we know:

trace = 1-2Y2-2Z2+1-2X2-2Z2+1-2X2-2Y2+1

 = 4-4(X2+Y2+Z2)

Since the matrix represents a rotation, we know that the

corresponding quaternion must be of unit magnitude, that is:

66

X2+Y2+Z2+W2 = 1

and so the trace reduces to 4W2. Thus for a 4x4 homogeneous

matrix we have:

W = (trace)1/2

The remaining components of the quaternion (X,Y,Z) which is

the axis of rotation scaled by half the sine of the angle of

rotation, are obtained by combining diagonally opposite

elements of the matrix Mij and Mji, where 0≤i,j≤2. We have:

X = (M21-M12)/4W

Y = (M02-M20)/4W

Z = (M10-M01)/4W

For zero W these equations are undefined and so other

combinations of the matrix components, along with the fact

that the quaternion is of unit magnitude, are used to

determine the axis of rotation.

Having outlined our scheme, we now discuss how to interpolate

in quaternion space. Since a rotation maps onto a quaternion

of unit magnitude, the entire group of rotation maps onto the

surface of the four-dimensional unit hypersphere in quaternion

space. Curves interpolating through key orientations should

therefore lie on the surface of this sphere. Consider the

simplest case of interpolating between just two key

quaternions. A naive, straightforward, linear interpolation

between the two keys results in a motion that speeds up in the

middle. This is because we are not moving along the surface of

the hypersphere but cutting across it. In order to ensure a

steady rotation we must employ spherical linear interpolation,

where we move along an arc of the geodesic that passed through

the two keys.

67

Spherical linear interpolation

The formula for spherical linear interpolation is easy to

derive geometrically. Consider the two-dimensional case of two

vectors A and B separated by an angle Ω and vector P which

makes an angle θ with A as shown in Figure 15. P is derived

from spherical interpolation between A and B and we write:

P = αA + βB

Trivially, we can solve for α and β given:

|P| = 1

A.B = cos(Ω)

A.P = cos(θ)

to give:

P = A sin(Ω-θ)/sin(Ω) + B sin(θ)/sin(Ω)

Spherical linear interpolation between two unit quaternions q1

and q2, where:

q1.q2 = cos(Ω)

is obtained by generalising the above to four dimensions and

replacing θ by Ωu where 0≤u≤1. We write:

slerp(q1,q2,u) = q1 sin(1-u)Ω/sin(Ω) + q2 sin(Ωu)/sin(Ω)

Function slerp(p,q,t,qt) returns the interpolated quaternion

qt, for t between p and q. It caters to special cases where

the keys are very close together, in which case we approximate

using the more economical linear interpolation and avoid

divisions by very small numbers since

68

sin(Ω)→ 0 as Ω → 0

The case where p and q are diametrically opposite, or nearly

so, requires special attention.

Now, given any two key quaternions, p and q, there exist two

possible arcs along which one can move, corresponding to

alternative starting directions on the geodesic that connects

them. One of them goes around the long way, and this is the

one we wish to avoid. Naively, one might assume that this

reduces to either spherically interpolating between p and q by

angle Ω, where

p.q = cos(Ω),

or interpolating in the opposite direction by the angle

(2π - Ω). This, however, will not produce the desired effect.

The reason is that the topology of the hypersphere of

orientation is not just a straightforward extension of the

three-dimensional Euclidean sphere. To appreciate this, it is

sufficient to consider the fact that every rotation has two

representations in quaternion space, namely q and -q, that is,

the effect of q and -q is the same. That this is so is because

algebraically the operator q()q-1 has exactly the same effect

as (-q)()(-q)-1. Thus, points diametrically opposed represent

the same rotation. Because of this topological oddity, care

must be taken when determining the shorter arc. A strategy

that works is to choose interpolating between either the

quaternion pairs p and q or p and -q. Given two key

orientations p and q, find the magnitude of their difference,

that is (p-q).(p+q), and compare this to the magnitude of the

difference when the second key is negated, that is

(p+q).(p+q). If the former is smaller, then we are already

moving along the smaller arc and nothing needs to be done.

These considerations are shown schematically in Figure 16.

69

Figure 15 Spherical linear interpolation

Figure 16 Shortest arc determination

70

CHAPTER 6

BROWSER DESCRIPTION

Based on the specifications discussed so far, a browser has

been developed in C using X Window Motif user interface

toolkit, and it has been named Web3D. Web3D uses the standard

X11 library for graphical renderings, and Motif widget library

for the interface layout and functionality.

6.1 The Web3D User Interface

The Web3D window is divided vertically into five areas: menu

bar, file name display area, drawing area, tool bar, and

status bar, as shown in Figure 17. The menu bar provides

access to the full functionality of Web3D. The toolbar and

additional accelerator keys and mnemonics provide quick access

to commonly used functions like movement of camera, and

document navigation.

The major functions included in the menu bar are as follows:

New: This function fires up the editor where one can create a

new input source file in the file format recognised by Web3D.

The standard extension for Web3D files is “.wrl” for world.

71

Figure 17 Web3D user interface

Open: One can open an existing wrl file by selecting from a

file-selection box that is a one of Motif's widgets.

Edit Source: Edit the source code of any input file being

browsed currently. Here, too, the editor is called, and one

can view/edit the source code and then browse the output at

the same time in the same Web3D environment.

72

Back/Forward: While following hyperlinks, users can go “Back”

in the sequence of worlds they have browsed previously, or go

“forward” in the sequence by one step (if any).

Add Bookmark: As in standard WWW browsers, this feature allows

users to mark important worlds in a bookmarks file, which they

can come back to later on.

Scene Information Window: Clicking on this menu item fires a

small independent window that displays information regarding

the scene currently being browsed in the display area. More

specifically, it gives information about the

position/orientation of the camera and light sources, the

number of primitives used to render the scene, and the centre

coordinates of these primitives in three-dimensional space.

The menu bar can also be used to select the rendering mode for

a particular scene. Web3D supports four rendering modes:

wireframe, hidden line, flat shading, and texturing. The

rendering mode specified in the input file can be overridden.

Besides, three levels of detail are provided: low, medium, and

high. These modes determine the number of polygons used to

render a primitive. Low detail uses very few polygons to speed

up rendering and animation, whereas high detail option uses a

considerably large number of polygons to render the

primitives. On a display without hardware graphics

acceleration, where frame rates are slow for shaded models, it

might be advisable to navigate in wireframe under low level of

detail, and see the shaded version in high detail only in the

pauses between the animations.

The Web3D user interface is in the form of a window (the

drawing area) that looks out into 3D space. Users (synthetic

cameras) can enter this space, manipulate 3D objects placed

there, throw light upon them, and experience the same sights

as any observer would in real space. Navigation in 3D space is

complicated by the need to control (at least) six degrees of

freedom at the same time. Web3D does not assume the

73

availability of any special 3D input device, such as a

spaceball or position/orientation sensors, and provides a

number of natural mappings for a standard 2D mouse. The mouse

can be used to control the motion of the observer by clicking

on push-buttons available on the browser's window. Web3D gives

the observer six degrees of freedom, and allows him or her to

control only one degree at a time. Should users get lost in a

scene, a “Reload” function is available to restore the initial

view of the scene.

Besides describing graphical objects and their attributes,

Web3D is capable of embedding graphical objects within text

documents, and linking these documents by means of hypertexts.

Hyperlinks can be to other virtual worlds, or to HTML

documents, in which case Web3D invokes a standard WWW browser

(Mosaic or Netscape). Web3D, too, can be invoked by a properly

configured WWW browser. Web3D has so far been known to

interface with both NCSA Mosaic for X Windows and Netscape

Navigator for X Windows.

6.2 Web3D’s Software Architecture

Figure 18 shows the basic software architecture of Web3D.

Users communicate with the browser via the Interface Layer

which is the client-end user interface of Web3D. The arrows

indicate the flow of data and control signals. The input

stream in parsed and an internal stack of tokens is

constructed. The rendering component (X11 library) then

visualizes the contents of this stack and renders the scene

correctly in the display area of the browser's window.

74

Figure 18 Web3D architecture

Thus the source code of Web3D is independent of any particular

‘graphics’ library for its graphical renderings, and is based

on freely available software components except that it

requires Motif, a commercial library, for building its

‘interface’.

Every node has a separate function associated with it. This

function alone is responsible for interpreting/rendering

itself. For example, provided global variables and other

environment settings are correct, the function cube() when

called, draws a cube all by itself. The main routine that

calls all the drawing functions is as follows:

75

while (array_of_tokens[token_count])

{

 /* scan the array of tokens created from input stream */

 switch (array_of_tokens[token_count++])

 {

 case AMBIENTLIGHT : ambientlight();

 case ANIMATION : animation();

 case ASCIITEXT : asciitext();

 case CONE : cone();

 case CUBE : cube();

 case CYLINDER : cylinder();

 case DIRECTIONALLIGHT : directionallight();

 case FOG : fog();

 case MATERIAL : material();

 case ORTHOGRAPHICCAMERA : orthographiccamera();

 case PERSPECTIVECAMERA : perspectivecamera();

 case POINTLIGHT : pointlight();

 case SPHERE : sphere();

 case SPOTLIGHT : spotlight();

 case TEXTPROPERTIES : textproperties();

 }

 /* Flush the display in the drawing area */

 XFlush(XtDisplay(wDraw));

}

As is evident from the code above, Web3D treats cameras and

light sources as any other geometric primitive.

76

CHAPTER 7

CONCLUDING REMARKS

This thesis presented the specifications of a browser capable

of presenting graphical renderings of a virtual 3D world

within a computer. This 3D world may be a CAD model, a

scientific simulation, a view into a database, or a

walkthrough into a virtual world. Needless to say, such

applications can add exciting new dimensions to the power and

usefulness of the Web, adding new ways of interfacing with the

user and presenting information.

In order to firmly establish Web3D as the standard for

describing three-dimensional scenes and animations on the

Internet, it is not sufficient to have a good language

specification. Browsers capable of many protocols, and

implemented on many platforms are necessary. Another crucial

point is the free availability of source code for non-

commercial organisations to allow research and experiment with

this new type of media. These were the design goals of Web3D.

We hope that the availability of an open development platform

will contribute significantly to the evolution of the Web3D

standard.

77

Web3D is still only a “viewer”, i.e. it has to depend on other

applications like Mosaic for file retrievals. The ability to

retrieve files across a network needs to be added. A number of

animation features like animation of articulated structures,

collision detection, and soft-object animations can be added

to the visual realism of the rendered scenes. Real-time multi-

user interaction over a network can be implemented, which will

enable multi-participant simulations of the same 3D worlds

simultaneously.

Web3D's 3D-scene-description language is not yet object-

oriented, i.e. it lacks the capability of declaring prototypes

for nodes, and the ability to use those nodes lower in the

scene-graph hierarchy. The language can also be made more

extensible by being able to declare nodes that are not part of

the standard language specifications without having to

recompile the code. Besides, a number of features can be added

to the user interface of Web3D to make it closer in

functionality to a standard Web browser.

78

REFERENCES

1. Najork and M.H. Brown, “Obliq-3D: A High-Level, Fast-

Turnaround 3D Animation System”, IEEE Transactions on

Visualization and Computer Graphics, Vol. 1, No. 2, June

1995.

2. Michael Pichler, Gerbert Orasche, Keith Andrews, Ed

Grossman, and Mark McCahill, “VRweb: A Multi-System VRML

Viewer”, The First Annual Symposium on the Virtual Reality

Modeling Language (VRML 95), December 1995.

3. Allen I. Holub, “Compiler Design in C”.

4. Foley van Dam, “Fundamentals of Interactive Computer

Graphics”.

5. Ian O. Angell and Dimitrios Tsoubelis, “Advanced Graphics in

Borland C++”.

6. Nabajyoti Barkakati, “X Window Programming System”.

7. Douglas A. Young, “The X Window System, Programming and

Applications with Xt”.

8. Andrew S. Glassner, Graphics Gems.

9. James Arvo, Graphics Gems II.

10. Marshall Brain, “Motif Programming: The Essentials and

More”.

