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Abstract. This paper describes a computing environment

named WBCSim that is intended to increase the productivity

of wood scientists conducting research on wood-based

composite materials. WBCSim integrates Fortran 77-based

simulation codes with a graphical front end, an optimization

tool, and a visualization tool. WBCSim serves as a prototype
for the design, construction, and evaluation of larger scale

problem solving (computing) environments. Several different

wood-based composite material simulations are supported. A

detailed description of the prototype’s software architecture

and a typical scenario of use are presented. The system

converts output from the simulations to the Virtual Reality

Modeling Language (VRML) for visualizing simulation results.
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1. Introduction

Scientists and engineers in many application domains
commonly use modeling and simulation codes
developed in-house that have poor documentation
and a poor user interface. Typically only
the developers of a code can make effective
use of it, and these codes are not typically
integrated with tools for visualizing the results.
Further, the code is often tied to a particular
computing environment. This situation reduces the
productivity of many research groups. This paper
describes a computing environment named WBCSim
that is intended to increase the productivity of
wood scientists conducting research on wood-based
composite (WBC) materials. WBCSim integrates
Fortran 77-based simulation codes with a graphical,

Web-based user interface, an optimization tool, and a
visualization tool.

The objective of WBCSim is twofold: (1) to
increase the productivity of our WBC research
group by improving their software environment, and
(2) to design and evaluate a specific prototype
problem solving (computing) environment (PSE)
as a step toward understanding how integrated
PSEs should be created. The philosophy of such
computing environments, a detailed description of the
software architecture of our prototype, and several
different wood-based composite material simulations
are discussed.

A problem solving environment is a system that
provides a complete, usable, and integrated set of high
level facilities for solving problems from a prescribed
domain [15], [18]. PSEs allow users to define and
modify problems, choose solution strategies, interact
with and manage appropriate hardware and software
resources, visualize and analyze results, and record
and coordinate extended problem solving tasks. In
complex problem domains, a PSE may provide
intelligent and expert assistance in selecting solution
strategies, e.g., algorithms, software components,
hardware resources, data, etc. Perhaps most
significantly, users communicate with a PSE in the
language of the problem, not in the language of a
particular operating system, programming language,
or network protocol. Expert knowledge of the
underlying hardware or software is not required.
Experience in dealing with large-scale engineering
design and analysis problems has indicated the
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critical need for PSEs with four distinguishing
characteristics: (1) facilitate the integration of diverse
codes, (2) support human collaboration, (3) support
the transparent use of distributed resources, and
(4) provide advisory support to the user.

WBCSim is a prototype PSE for making
legacy programs, which solve scientific problems
in the wood-based composites domain, widely
accessible. WBCSim currently provides Internet
access to command-line driven simulations developed
by the Wood-Based Composites Program at Virginia
Polytechnic Institute and State University. WBCSim
leverages the accessibility of the Web to make the
simulations with legacy code available to scientists
and engineers away from their laboratories. The
simulation codes used as test cases are written in
Fortran 77 and have limited user interaction. All the
data communication is done with specially formatted
files, which makes the codes difficult to use. WBCSim
hides all this behind a server and allows users to
graphically supply the input data, remotely execute
the simulation, and view the results in both textual
and graphical formats.

The remainder of this paper is organized as
follows: Section 2 reviews some related work in
the field of PSEs. Section 3 gives a detailed
description of the three simulation models supported
by WBCSim. Section 4 explains the WBCSim user
interface. The various software architecture layers
of WBCSim and the interaction between them is
described in Section 5. To help prospective WBCSim
programmers locate files on the WBCSim server,
Section 6 explains the file structure of WBCSim.
Section 7 describes how WBCSim is typically used.
Finally, Section 8 describes the visualization phase of
the simulations.

2. Related Work

In the past, problem-specific PSEs have been
developed for a wide variety of application domains.
Recently, increasing attention is being given to
broader issues such as: (1) developing a model
or architecture for PSEs; (2) leveraging the Web;
(3) supporting distributed, collaborative problem
solving; and (4) providing software infrastructure
(“middleware”) to make PSE-building easier.

One problem domain where PSEs are common is
the numerical solution of partial differential equations
(PDEs). An early example is ELLPACK [6], a
portable Fortran 77 system for solving two and three
dimensional elliptic PDEs. Its strengths include
a high-level language which allows users to define
problems and solution strategies in a natural way

(with little coding), and a relatively open architecture
which allows expert users to contribute new problem
solving modules. ELLPACK’s descendents include
Interactive ELLPACK [13], which adds a graphical
user interface and allows greater user interaction,
and Parallel ELLPACK (PELLPACK) [19], which
includes a more sophisticated and portable user
interface, incorporates a wider array of solvers, and
can take advantage of multiprocessing. PELLPACK
also includes an expert or “recommender” component
named PYTHIA [21], [37]. Another system which
provides a high level, problem-oriented environment
for PDE-solving is SciNapse [1], a code-generation
system that transforms high-level descriptions of PDE
problems into customized C or Fortran code, in an
effort to eliminate the need for programming by hand.
Other PSEs in the PDE problem domain include
DEQSOL [35], PDEase2D [38], and PDESOL [33].

PSEs are being built for a number of other
scientific domains as well. For example, Johnson
et al. [29] describe SCIRun, a PSE that allows
users to interactively compose, execute, and control
a large-scale computer simulation by visually
“steering” a dataflow network model. Bramley et
al. [4], [16] have developed Linear System Analyzer,
a component-based PSE, for manipulating and
solving large-scale sparse linear systems of equations.
Dabdub et al. [11] have built a PSE for modeling air
pollution in urban areas. The WISE environment [24]
lets researchers link models of ecosystems from
various subdisciplines.

An important goal of PSE researchers is to
define a generic architecture for PSEs and to develop
middleware (typically object-oriented) to facilitate
the construction and tailoring of problem-specific
PSEs [15]. This emphasis, along with work in
Web-based, distributed, and collaborative PSEs,
characterizes much of the current research in PSEs.
For example, in [8] the authors describe PDELab, a
multilayered, object-oriented framework for creating
high-level PSEs. PDELab supports PDESpec, a
PDE specification language that allows users to
specify a PDE problem in terms of PDE objects
and the relationships and interactions between
them. Parallel Application WorkSpace (PAWS) [28]
is a CORBA-based, object-oriented server for
connecting parallel programs and objects. Other
researchers investigating object-oriented frameworks
for PSE-building include Gannon et al. [16], Balay et
al. [3], and Long and Van Straalen [25].

With the rise of the Web, PSEs are now
beginning to support distributed problem-solving and
collaboration. Regli [31] describes Internet-enabled
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computer-aided design systems for engineering
applications. Net PELLPACK [26], PELLPACK’s
Web-based counterpart, lets users solve PDE
problems via Java applets. Other Web-based PSEs
include NetSolve [7] and NEOS [10]. Current PSE-
related research projects that emphasize distributed
collaboration include LabSpace [12], the Intelligent
Synthesis Environment (ISE) [17], Habanero [9],
Tango [5], Symphony [34], and Sieve [20].

3. Simulation Models

WBCSim contains three simulation models of interest
to scientists studying wood-based composite materials
manufacturing. Each of these models is described
briefly.

3.1. Rotary Dryer Simulation (RDS)

The rotary dryer simulation model [22], [23] was
developed as a tool to assist in the design of
drying systems for wood particles, such as used in
the manufacture of particleboard and strandboard
products. The rotary dryer is used in about 90
percent of these processes. It consists of a large,
horizontally oriented, rotating drum (typically 3 to
5 m in diameter and 20 to 30 m in length). The
wet wood particles are mixed directly with hot
combustion gases at the inlet. The gas flow provides
the thermal energy for drying, as well as the medium
for pneumatic transport of the particles through the
length of the drum. Interior lifting flanges serve to
agitate and produce a cascade of particles through
the hot gases. This process uses a co-current flow.

The RDS model consists of a series of material
and energy balance equations, which are defined for
each cascade of wood particles. A cascade cycle
begins when a particle drops off a lifting flange and
falls to the bottom of the drum. This is followed by
travel along the periphery of the drum, when the
particle is caught by a lifting flange. The cascade
ends when the particle attains its maximum angle of
repose and tumbles off of the lifting flange. The
heat and mass flows between cascade cycles, and the
distance of travel along the length of the drum for
each cycle, are determined by algebraic equations.
The user must supply the inlet conditions of the
hot gases and wet wood particles, as well as the
physical dimensions of the drum and lifting flanges,
flow rates, and thermal loss factor for the dryer.
The RDS model predicts the moisture content and
temperature of the wood particles for each cascade
in the drum, and predicts the gas phase composition
and temperature at each cascade.

3.2. Radio-Frequency Pressing (RFP)

The radio-frequency pressing model [32] was
developed to simulate the consolidation of wood
veneer into a laminated composite, where the energy
needed for cure of the adhesive is supplied by
a high-frequency electric field. Radio-frequency
pressing is commonly used for thick composites and
for laminated composites that are nonplanar. Wood
is a dielectric material, where the presence of water
(a common constituent of wood) and polar adhesive
molecules assist in the absorption of the electric field
energy. The model may be used to help design
alternative pressing schedules.

The RFP model consists of a collection of
nonlinear PDEs that describe the heat and mass
transfer within the veneer layers. The primary
variables are temperature and moisture content.
The moisture content is further divided into three
phases: bound water, liquid water, and water
vapor. These water phases must satisfy a criterion
of local thermodynamic equilibrium as represented
by a nonlinear algebraic equation. The model is
one-dimensional, with a fixed resistance to heat and
mass flux at the boundary. The results of the
model include the time-dependent temperature and
moisture content profiles in the veneer layers. A time-
and temperature-dependent equation also predicts
the extent of adhesive cure. The user must supply
the initial density, moisture content, and temperature
of the veneer, as well as veneer thickness, and the
electric field strength.

3.3. Composite Material Analysis (CMA)

The composite material analysis model was developed
to assess the strength properties of laminated fiber
reinforced materials, such as plywood. The model
can perform two tasks. First, the normal and shear
stresses together with the strains and curvatures
induced by a user-defined deformed shape in the
material can be calculated. Second, it can calculate
the stresses and strains caused by the combination of
different loading conditions such as tension, moment,
torque, or shear. The calculations are based on the
composite lamination matrix theory (CLMT) and the
Hoffmann failure criteria. The model predicts the
tensile strength, bending strength, and shear strength
of the composite material. The strength calculations
are performed iteratively. The load level is increased
by a specific increment until all the layers in the
composite fail. The load at the point of failure of
each lamina, and the induced stresses and strains in
the laminate, are recorded.

This simulation was designed to allow easy
specification of the type of material, thickness,
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Figure 1. Input screen for RDS simulation. Figure 3. Input screen for RFP simulation.

Figure 2. Output graph for RDS simulation. Figure 4. Output graph for RFP simulation.

and orientation of the fibers at each layer of the
composite. The mechanical and failure properties
of different materials are predefined. The detailed
calculations at each step of the iteration process are
stored as text files during the solution phase. The
resulting stresses and the failure load of each layer
are displayed in a three-dimensional model of the
laminated composite.

4. WBCSim User Interface

The WBCSim user interface is composed of Java
applets. Figure 1 shows the applet that takes input
for the RDS simulation. The interface consists of a
set of text boxes where the user can enter values
for various input parameters. The “Store Problem”
button is used to store the current set of input values,

which can be retrieved later using the “Retrieve
Problem” button. Some simulation parameters are
not accessible by the user but may be viewed by
clicking on “Simulation Constants”. Clicking on
“Run Simulation” executes the Fortran code with the
input values supplied by the user through the applet,
and produces output data in text and graphical
forms. For example, Figure 2 shows an output graph
for the temperature and moisture content at various
distances from the dryer inlet.

The input screen for the RFP simulation is
similar to the RDS input screen, as shown in Figure 3.
The user can enter values for the parameters through
text boxes, and the results are produced in both text
and graphical forms. For example, Figure 4 shows an
output temperature graph as a function of position
through the thickness of the laminated composite and
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time during processing. The graphic is a fixed-frame
three dimensional plot generated by Mathematica.

Figure 5 shows the input screen for the CMA
simulation. Each row of input data represents a
layer of the wood composite. The user can add
layers to the composite by clicking on the leftmost
checkbox for that layer. Currently, a composite
can have at most ten layers. For each layer, the
user can select from a menu of materials, including
several wood species and synthetic materials. The
material properties are predefined. Thickness and
fiber orientation may be specified for each layer. The
user can enter values for various forces acting on
the composite by referring to the image displayed
within the applet. Clicking on “Run Simulation”
executes the Fortran code. An example of the output
produced is shown in Figure 6.

Figure 5. Input screen for CMA simulation.

Figure 6. Example output for the CMA simulation.

5. Software Architecture

The software architecture for WBCSim uses
a three-tier model. The tiers correspond to
(1) the legacy simulations and various visualization
and optimization tools, perhaps running on remote
computers; (2) the user interface; and (3) the
middleware that coordinates requests from the user
to the legacy simulations and tools, and the resulting
output. These three tiers are referred to as the
developer layer, the client layer, and the server layer,
respectively, as shown in Figure 7.

WBCSim supports legacy programs written in
any programming language. The only restriction is
that the program must take input parameters from
the command-line, one or more input files, or the
standard input stream. In particular, WBCSim
supports the three Fortran 77 simulation codes
described in Section 3.

5.1. Developer Layer

The developer layer consists primarily of the
legacy programs on which WBCSim is based. The
server layer expects a program in the developer layer
to communicate its data (input and output) in a
certain format. Thus, legacy programs are “wrapped”
with custom scripts. The scripts are written in Perl,
and each legacy program must have its own wrapper
script. The script receives input parameters from the
server, and converts those parameters as appropriate
for that legacy program. The legacy program is
executed with these parameters fed to its standard
input stream. The program’s input may direct it
to load appropriate input files. When the legacy
program terminates, the wrapper script packages the
program’s output to create an HTML page, and
passes the URL of this page to the server.

The developer layer also includes tools to help
developers get more from their simulations. In
WBCSim this concept is implemented by integrating
the legacy programs with an optimization tool and
various visualization tools.

The optimization tool provided with WBCSim
is the Design Optimization Tool (DOT) [36]. DOT
allows the user to provide ranges, as opposed to
fixed values, for the input parameters and get a
solution that either maximizes or minimizes a given
output value. DOT is a sophisticated engineering
optimization subroutine incorporated into WBCSim.

WBCSim examples use two visualization tools:
Mathematica [39] and VRML [2]. Mathematica is
used to generate static three dimensional graphs of
the simulation output. The output is also translated
to VRML. With a VRML viewer, the resulting
graphs can be viewed from various directions in the
three dimensional viewspace. In principle, developers
can add custom filters to convert a program’s output
to a useful form for any viewer of their choice.

The simulations generate text output files
containing raw data. The script that wraps the RFP
simulation executes Mathematica to generate GIF
files, and the VRML translator to generate VRML
files. The HTML page generated for the results of
the simulation includes links to these files.
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Figure 7. WBCSim architecture overview.

5.2. Client Layer

The client layer is responsible for the user
interface. It also handles communication with the
server layer. This is the only layer that is visible
to end-users, and typically will be the only layer
running on the user’s local machine.

The client layer consists of the Java applets
described in the previous section. After the
user enters all the necessary parameters to control
execution of the simulation, the client communicates
these parameters along with a request to execute
the corresponding program to the server layer. The
server layer returns the URL for the HTML page
generated from the simulation’s output. The client
layer directs this page to the user’s HTML browser.

The client layer also contains viewers for the
various visualization tools found in the developer
layer. WBCSim requires a VRML 2.0 viewer for
the RFP model, a VRML 1.0 viewer for the CMA
model, and a 3D visualization Java applet. The
user is responsible for installing a VRML viewer on
the local machine, but the 3D visualization applet is
automatically downloaded from the HTTP server.

5.3. Server Layer

The server layer is the core of WBCSim as
a system distinct from its legacy code simulations
and associated data viewers. The server layer is
responsible for managing execution of the simulations
and for communicating with the user interface
contained in the client layer. The main part of

the server layer is the Javamatic server [30]. The
Javamatic server is written in the Java programming
language. The Javamatic server can direct execution
of multiple simulations and accept multiple requests
from clients concurrently. The results from the
simulations are communicated to the clients using an
HTTP server.

For security reasons, Java applets that have
been downloaded from a network are not allowed to
read, write, or execute files on the client’s (local) file
system. Since WBCSim takes input data from users
via Java applets, this means that such applets must
forward requests to execute the legacy application
through the WBCSim server for processing. The
server processes these requests and returns the results
of the transaction to the client.

WBCSim uses the Java Socket class to
communicate between the client and the server. Each
time a user issues a command through a Java applet
(e.g., he/she clicks on the “Run Simulation” button),
a new client request is sent to the Javamatic server.
The Javamatic server then goes through the following
steps:

1. The main thread of the server creates a new
thread to service the request and then continues
to listen for new requests.

2. This new thread then receives the request from
the client.

3. If the request is to execute a simulation, the
server then validates the identifier in the request
using a dictionary file. The dictionary file
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Figure 8. Directory structure of WBCSim.

contains a list of known application identifiers
along with the path for the executable file for
each. If the validation fails, the server responds
with an error message and closes the connection.

4. If the validation succeeds, the server then
receives the arguments for the simulation and
returns a unique URL. This URL points to the
HTML file that will contain the results after the
execution.

5. The server creates a new process and takes
control of the input, output, and error streams.
However, only the error stream is used to provide
feedback to the client. The Java Virtual Machine
buffers the output stream and the output file(s)
are available only after the process terminates.
They are not used by WBCSim for real-time
feedback.

6. The server then executes the application in the
new process. While the process is executing,
the current thread sends to the client any
information coming from the error stream.

7. The client can request termination of the
execution of the simulation, or query the status
of the server.

8. When the simulation terminates, the server
closes its socket to the client and stops the two
threads.

9. The client then contacts the HTTP server (which
runs on the same machine as the Javamatic
server), and gets the content of the HTML page
generated for the simulation’s output.

6. Directory Structure of WBCSim

WBCSim simulations can be accessed from

http://wbc.forprod.vt.edu/pse/

All source and data files required for running
WBC simulations are placed in the WBCSim home
directory. The directory structure of WBCSim is
shown in Figure 8.

A brief description of the contents of each
directory in WBCSim is as follows:

1. admin/: contains files required for maintaining
the server, i.e., starting the server, setting
environment variables prior to starting the
server, maintaining a log of client transactions,
and the WBCSim dictionary of recognized
commands.

2. classes/: contains the Java bytecode for
WBCSim.

3. data/archive/: contains a log of old simulation
results that a user may have stored. The log files
are stored under a separate subdirectory for each
user.

4. data/input/: contains the simulation input
files generated by a user while performing a
simulation. These files are temporary and may
be deleted.

5. data/output/: contains the simulation output
files generated by a user while performing a
simulation. All the results have unique names
and are stored here temporarily until they are
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Figure 9. Legacy Fortran 77 simulation code wrappers.

permanently archived. These files may be
deleted.

6. images/: contains images that are displayed on
the WBCSim Web pages. Images generated by
simulations are not stored here.

7. scripts/: contains Perl scripts for WBCSim.
8. src/fortran/: contains Fortran code that runs

the simulations.
9. src/java/: contains Java source code for

WBCSim.

7. Simulation Scenario

WBCSim incorporates the legacy Fortran 77
programs that implement its models without any
modifications to the code. This has the advantage
that if the programmer decides to make changes in the
legacy program, such as bug fixes, recompilation with
new libraries or newer compilers, or implementing a
different algorithm, the new program can be installed
in WBCSim without additional work. Figure 9 shows
how this is possible.

Consider the RFP simulation. A Perl script
(RFP Sim Wrapper) acts as a proxy between the
Javamatic server and the simulation. This script is
responsible for converting data from the Javamatic
server to a format the RFP simulation can recognize.

In a typical scenario, the server will execute
the RFP Sim Wrapper and give it all the input
parameters from the command line plus an additional

argument. The input parameters come directly from
the client and they are a sequence of strings derived
from the user’s selection. The Javamatic server
treats all parameters as strings regardless of whether
they are boolean, numeric, or alphanumeric. The
additional argument is a filename, which is accessible
from the HTTP server. The RFP Sim Wrapper does
not return the results to the Javamatic server, but
outputs them in HTML format to that file. The
Javamatic server then returns to the client the URL
pointing to that file.

When executed, the RFP Sim Wrapper packages
all the input parameters into a file and executes the
RFP simulation. The parameters are recognized
by position, thus all parameters must be present
and have a value even if they are not visible on
the interface or the user did not provide a value.
The client has a list of default values for all the
parameters that are not visible on the interface and
so it fills the blanks before sending the parameters.

The RFP simulation has its own text-based
user interface and requires input from the standard
input stream (e.g., keyboard). The RFP Sim
Wrapper takes control of the standard input stream
of the RFP simulation and generates the appropriate
keystrokes to read the input file and generate the
results. It does this by generating a new file with all
the appropriate commands and redirecting that file
at the command-line when it executes the simulation.
This is a temporary file and is deleted when the
simulation completes execution.
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While the simulation executes, RFP Sim
Wrapper takes control of the standard output stream
of the simulation and listens for specific string
patterns. These string patterns indicate major
milestones in the execution of the simulation (i.e.,
successful completion of a simulation step or the
computation of an intermediate value). RFP Sim
Wrapper then generates a message and outputs it
to the standard error stream. The Javamatic server
captures that message and propagates it to the
client. Eventually the message gets to the user. The
standard error stream is used, instead of the standard
output stream, because Java buffers the standard
output stream and makes it available only after
the process terminates. In contrast, the contents
of the standard error stream are sent continuously
to the parent of this process. Arbitrary network
delays can cause a group of messages to be delivered
simultaneously, even though they were generated at
different times. The client always displays the latest
message and discards any old messages.

When the simulation terminates, the wrapper
takes the results and creates a file, in HTML format,
with the filename given by the server. This file
contains a list of links that point to the results
in various formats. The RFP Sim Wrapper then
runs Mathematica to read the results, which are in
textual format, and generates a 3D Plot, which is
a Mathematica internal data structure. RFP Sim
Wrapper then calls the appropriate Mathematica
function to output the 3D Plot to a file in
encapsulated postscript format. It also calls the
VRML translator to generate a VRML wireframe
representation of the results. RFP Sim Wrapper
executes a series of filters to convert the results to
GIF images. RFP Sim Wrapper also creates text
and HTML-table versions of the results. All these
different views are stored in individual files on the
server. An archive tool manages the files from
different simulation runs.

A benefit of using the simulation code in a PSE
environment is that other software tools, such as
the DOT optimizer, can be used to provide more
functionality to the end-user. The user can provide
a range instead of a fixed value for any of the
input parameters and specify which component in
the output to maximize or minimize. RFP Opt
Wrapper, a Perl script, receives the input parameters
from the server plus the variables to optimize and a
filename. The wrapper then packages all the input
parameters in a file and executes DOT Wrapper,
which is a Fortran 90 program. RFP Opt Wrapper
gives DOT Wrapper the filename that contains the

data plus the name of the program to call every time
the optimizer asks for an evaluation of the objective
function. RFP/DOT Wrapper executes the RFP
simulation once and returns the objective function
value. When the optimizer finishes, DOT Wrapper
returns the optimal parameter values and objective
function value to RFP Opt Wrapper. RFP Opt
Wrapper then executes the RFP simulation one more
time and packages the results in the same format
that RFP Sim Wrapper uses. The advantage is that
neither the simulation code nor the optimization code
needs to be changed. To add a new optimizer with a
different optimization algorithm, the only thing that
needs to be done is to modify the wrapper script
DOT Wrapper. The simulation code and RFP/DOT
Wrapper remain the same.

8. Visualization

VRML was chosen as the primary viewing
environment for simulation output. Our approach is
to convert output generated by Fortran into a VRML
description so that the output of the simulations can
be visualized interactively. A custom-built translator
provides greater control over the description of 3D
models that third-party translators cannot provide.

VRML was chosen for the following reasons:

1. VRML is a recognized standard for visualizing
3D worlds.

2. VRML viewers are available for a wide variety of
platforms, and most of them are easy to use.

3. VRML syntax is simple, and VRML code can be
easily generated by programs [27].

VRML models were generated for the radio-
frequency pressing model and the composite material
analysis model.

Radio-frequency pressing model: The output data
generated by RFP is a matrix of numbers where each
number represents the value of a dependent variable
with respect to two independent variables. Since this
is a two-dimensional data matrix, it is conveniently
modeled as a VRML ElevationGrid as shown in
Figure 10. The dependent variable here is “Pressure”
(y axis), which is now represented by variations in
the height of the elevation grid, and the independent
variables are “Position” (x axis) and “Time” (z
axis). Each element in the matrix becomes a colored
point on the grid, and the color is smoothly varied
between the grid points. WBCSim also provides a
variant of this model where elements in the matrix
are represented by squares rather than points, and a
different color is assigned to each square, resulting in
a checkered elevation grid.

To ensure that the top and bottom views of the
elevation grid are able to indicate the true height of
the grid points, each grid point is colored based on its
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Figure 10. Pressure graph showing the variation of pressure with increasing
distance from the laminate surface and with time (the receding axis).

height, with blue representing the lowest point on the
grid, and red the highest. All other grid points are
colored by linearly interpolating between blue and
red color values.

Composite material analysis model: In this
simulation, the output contains information about
the forces being applied on various layers of a
composite when one or more of the layers fail due
to an applied load. The composites are tested for
strength based on their material property, thickness
of layers, and orientation of the fibers in each layer.
Material properties may be selected from a menu of
various wood species. Five testing methods have
been implemented: analysis, design, tensile strength,
bending strength, and shear strength. In the analysis
method the program calculates the deformed shape
of a multi-layered composite laminate (e.g., plywood)
caused by user-defined loads and moments. In the
design method the program calculates the applicable
loads and moments which cause a user-defined
deformation of the multi-layered composite. The
other three methods calculate the magnitude of the
load (tensile, bending, or shear) which causes the
multi-layer composite laminate to fail. In the analysis
and design methods, one or more layers may or may
not fail, whereas in the other three methods, the
simulation continues until all the layers fail. It is
the job of the VRML translator to decide which
layers have failed by looking at the Fortran-generated

output files. Each time a layer fails, a new VRML
model is generated containing information about the
forces on each layer at that instant. Failed layers are
displayed in red (gray in the figure), whereas active
layers are displayed in black, as shown in Figure 11.

9. Conclusion

By providing a Web-based graphical interface
to command-line Fortran applications, WBCSim
provides the following benefits:

1. It enables a wider class of users to access these
tools away from their workplaces.

2. Since these simulations take input via Java
applets, scientists and engineers working from a
variety of platforms are able to access them.

3. All processing is done on the server-end, so
users of WBCSim need not worry about software
installation issues at the client—anybody with
a Java-enabled Web browser and an Internet
connection can perform these simulations.

4. Output from the simulations is visualized
graphically as compared to the earlier method of
reading text files generated by Fortran. This has
the advantage that the user need not know what
subprograms are being invoked, and what data
conversions are being done to satisfy a request.
In other words, the user can concentrate on the
intellectual aspects of the problem solution [14],
leaving data manipulation, management, and
presentation to WBCSim.

10



Figure 11. Wireframe model of a composite showing failed layers (gray) and active layers
(black), and the orientation of fibers in each layer. In this figure, the second layer has failed.
The horizontal protrusions are proportional in length to the magnitude of forces being applied
to the layers at the time of failure. The direction of the protrusions is unimportant.

In short, WBCSim provides an integrated set
of high-level facilities for solving problems in the
wood-based composites domain. It allows users to
define, record, and modify problems, and to visualize
and analyze simulation results, which is the very
essence of a PSE.

The original motivation for creating WBCSim
was the more obvious effects of improved usability
provided by the graphical user interface and
Web-based access. These effects in themselves
would be enough to make WBCSim a success for
the research group that depends on these WBC
models. However, there are more significant effects
of WBCSim on the group’s productivity, which were
not so clearly predictable in advance. These effects
are related to the synergistic nature of combining
the models, an optimizer tool, and a visualization
tool. The resulting integrated package immediately
led to greater use of the simulation models by the
researchers. Not only did they use the models more,
but they used them to examine the design space in
new ways. This is borne out by the fact that the
researchers started to use parameter settings that
caused the simulations to fail, that is, they uncovered
new bugs in the simulation codes. Once these bugs
were corrected, the researchers were able to continue
more extensive use of the models.

It is likely that this integration effect will arise in
many application domains. In general, an increased
ability to integrate simulation, optimization, and

analysis tools will allow researchers to get more out
of their tools as they find new ways to make use of
them.
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